期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《结构与土木工程前沿(英文)》 >> 2019年 第13卷 第2期 doi: 10.1007/s11709-018-0466-6

Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method

1. Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
2. Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

录用日期: 2018-03-29 发布日期: 2019-03-12

下一篇 上一篇

摘要

In the present study, the free vibration of laminated functionally graded carbon nanotube reinforced composite beams is analyzed. The laminated beam is made of perfectly bonded carbon nanotubes reinforced composite (CNTRC) layers. In each layer, single-walled carbon nanotubes are assumed to be uniformly distributed (UD) or functionally graded (FG) distributed along the thickness direction. Effective material properties of the two-phase composites, a mixture of carbon nanotubes (CNTs) and an isotropic polymer, are calculated using the extended rule of mixture. The first-order shear deformation theory is used to formulate a governing equation for predicting free vibration of laminated functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beams. The governing equation is solved by the finite element method with various boundary conditions. Several numerical tests are performed to investigate the influence of the CNTs volume fractions, CNTs distributions, CNTs orientation angles, boundary conditions, length-to-thickness ratios and the numbers of layers on the frequencies of the laminated FG-CNTRC beams. Moreover, a laminated composite beam combined by various distribution types of CNTs is also studied.

相关研究