期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《结构与土木工程前沿(英文)》 >> 2023年 第17卷 第10期 doi: 10.1007/s11709-023-0980-z

Aerodynamic stability evolution tendency of suspension bridges with spans from 1000 to 5000 m

收稿日期: 2022-09-19 录用日期: 2023-12-12 发布日期: 2023-12-12

下一篇 上一篇

摘要

Aerodynamic instability owing to aerostatic and flutter-related failures is a significant concern in the wind-resistant design of long-span suspension bridges. Based on the dynamic characteristics of suspension bridges with spans ranging from 888 to 1991 m, we proposed fitted equations for increasing spans and base frequencies. Finite element models of suspension bridges with increasing span from 1000 to 5000 m were constructed. The structural parameters were optimized to follow the fitted tendencies. To analyze the aerodynamic instability, streamlined single-box section (SBS), lattice truss section (LTS), narrow slotted section (NSS), and wide slotted section (WSS) were considered. We performed three-dimensional (3-D) full-mode flutter analysis and nonlinear aerostatic instability analysis. The flutter critical wind speed continuously decreases with span growth, showing an unlimited approaching phenomenon. Regarding aerostatic instability, the instability wind speed decreases with span to approximately 3000 m, and increases when the span is in the range of 3000 to 5000 m. Minimum aerostatic instability wind speed with SBS or LTS girder would be lower than observed maximal gust wind speed, indicating the probability of aerostatic instability. This study proposes that suspension bridge with span approximately 3000 m should be focused on both aerostatic instability and flutter, and more aerodynamic configuration optimistic optimizations for flutter are essential for super long-span suspension bridges with spans longer than 3000 m.

相关研究