期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《环境科学与工程前沿(英文)》 >> 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1242-0

Transport of bacterial cell (

School of Environment, Northeast Normal University, Changchun 130117, China

发布日期: 2020-04-09

下一篇 上一篇

摘要

Abstract • The recharge pond dwelling process induced changes in cell properties. • Cell properties and solution chemistry exerted confounding effect on cell transport. • E. coli cells within different recharge water displayed different spreading risks. Commonly used recharge water resources for artificial groundwater recharge (AGR) such as secondary effluent (SE), river water and rainfall, are all oligotrophic, with low ionic strengths and different cationic compositions. The dwelling process in recharge pond imposed physiologic stress on Escherichia coli (E. coli) cells, in all three types of investigated recharge water resources and the cultivation of E. coli under varying recharge water conditions, induced changes in cell properties. During adaptation to the recharge water environment, the zeta potential of cells became more negative, the hydrodynamic diameters, extracellular polymeric substances content and surface hydrophobicity decreased, while the cellular outer membrane protein profiles became more diverse. The mobility of cells altered in accordance with changes in these cell properties. The E. coli cells in rainfall recharge water displayed the highest mobility (least retention), followed by cells in river water and finally SE cells, which had the lowest mobility. Simulated column experiments and quantitative modeling confirmed that the cellular properties, driven by the physiologic state of cells in different recharge water matrices and the solution chemistry, exerted synergistic effects on cell transport behavior. The findings of this study contribute to an improved understanding of E. coli transport in actual AGR scenarios and prediction of spreading risk in different recharge water sources.

相关研究