检索范围:
排序: 展示方式:
Novel interpretable mechanism of neural networks based on network decoupling method
《工程管理前沿(英文)》 2021年 第8卷 第4期 页码 572-581 doi: 10.1007/s42524-021-0169-x
关键词: neural networks interpretability dynamical behavior network decouple
Multiscale computation on feedforward neural network and recurrent neural network
Bin LI, Xiaoying ZHUANG
《结构与土木工程前沿(英文)》 2020年 第14卷 第6期 页码 1285-1298 doi: 10.1007/s11709-020-0691-7
关键词: multiscale method constitutive model feedforward neural network recurrent neural network
Deep convolutional tree-inspired network: a decision-tree-structured neural network for hierarchical
《机械工程前沿(英文)》 页码 814-828 doi: 10.1007/s11465-021-0650-6
关键词: bearing cross-severity fault diagnosis hierarchical fault diagnosis convolutional neural network decision tree
Heat, mass, and work exchange networks
Zhiyou CHEN, Jingtao WANG
《化学科学与工程前沿(英文)》 2012年 第6卷 第4期 页码 484-502 doi: 10.1007/s11705-012-1221-5
关键词: process system engineering integration methods heat exchange network mass exchange network work exchange network
Yang Li, Lei Shi, Yi Qian, Jie Tang
《环境科学与工程前沿(英文)》 2017年 第11卷 第1期 doi: 10.1007/s11783-017-0903-0
关键词: Innovation diffusion Collaboration network Wastewater treatment plant Complex network Data driven
Identifying spreading influence nodes for social networks
《工程管理前沿(英文)》 页码 520-549 doi: 10.1007/s42524-022-0190-8
关键词: complex network network science spreading influence machine learning
钟义信
《中国工程科学》 1999年 第1卷 第1期 页码 24-29
信息网络正在各地迅猛崛起,并以史所罕见的规模和速度生长成为世界性社会基础结构,深刻地改变着人们的生产方式、工作方式、学习方式、交往方式、生活方式和思维方式,成为工程学界以至整个社会普遍关注的集点、热点和前沿。文章旨在从理论上廓清信息网络的概念,阐明为什么信息网络对于科学技术的进步、对于世界经济和人类社会的发展能够产生如此巨大和深远的作用与影响。在此基础上,论述信息网络在现代工程学中的作用与地位,以及信息网络工程学在当前的主要研究内容和方向。
PID neural network control of a membrane structure inflation system
Qiushuang LIU, Xiaoli XU
《机械工程前沿(英文)》 2010年 第5卷 第4期 页码 418-422 doi: 10.1007/s11465-010-0117-7
Online recognition of drainage type based on UV-vis spectra and derivative neural network algorithm
《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1430-6
• UV-vis absorption analyzer was applied in drainage type online recognition.
关键词: Drainage online recognition UV-vis spectra Derivative spectrum Convolutional neural network
A neural network-based production process modeling and variable importance analysis approach in corn
《化学科学与工程前沿(英文)》 2023年 第17卷 第3期 页码 358-371 doi: 10.1007/s11705-022-2190-y
关键词: big data corn to sugar factory neural network variable importance analysis
Negative weights in network time model
Zoltán A. VATTAI, Levente MÁLYUSZ
《工程管理前沿(英文)》 2022年 第9卷 第2期 页码 268-280 doi: 10.1007/s42524-020-0109-1
关键词: graph technique network technique construction management scheduling
韦乐平
《中国工程科学》 2001年 第3卷 第5期 页码 12-16
文章首先分析了新时期的巨大挑战及其对网络的深远影响,特别指出了网络面临的巨大容量压力。接下来分别就主宰网络时代的三个基本定律:摩尔定律、光纤定律和迈特卡尔夫定律的内涵、影响和技术极限进行了论述。最后探讨了骨干网传输链路、传送节点和业务节点的容量演进策略。
The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis
null
《医学前沿(英文)》 2018年 第12卷 第4期 页码 412-425 doi: 10.1007/s11684-018-0650-z
Transcription factor networks have evolved in order to control, coordinate, and separate, the functions of distinct network modules spatially and temporally. In this review we focus on the MYC network (also known as the MAX-MLX Network), a highly conserved super-family of related basic-helix-loop-helix-zipper (bHLHZ) proteins that functions to integrate extracellular and intracellular signals and modulate global gene expression. Importantly the MYC network has been shown to be deeply involved in a broad spectrum of human and other animal cancers. Here we summarize molecular and biological properties of the network modules with emphasis on functional interactions among network members. We suggest that these network interactions serve to modulate growth and metabolism at the transcriptional level in order to balance nutrient demand with supply, to maintain growth homeostasis, and to influence cell fate. Moreover, oncogenic activation of MYC and/or loss of a MYC antagonist, results in an imbalance in the activity of the network as a whole, leading to tumor initiation, progression and maintenance.
Deep convolutional neural network for multi-level non-invasive tunnel lining assessment
《结构与土木工程前沿(英文)》 页码 214-223 doi: 10.1007/s11709-021-0800-2
关键词: concrete structure GPR damage classification convolutional neural network transfer learning
网络系统行为效用计算——概念与原理 Article
胡昌振
《工程(英文)》 2018年 第4卷 第1期 页码 78-84 doi: 10.1016/j.eng.2018.02.010
标题 作者 时间 类型 操作
Multiscale computation on feedforward neural network and recurrent neural network
Bin LI, Xiaoying ZHUANG
期刊论文
Deep convolutional tree-inspired network: a decision-tree-structured neural network for hierarchical
期刊论文
Diffusion of municipal wastewater treatment technologies in China: a collaboration network perspective
Yang Li, Lei Shi, Yi Qian, Jie Tang
期刊论文
Online recognition of drainage type based on UV-vis spectra and derivative neural network algorithm
期刊论文
A neural network-based production process modeling and variable importance analysis approach in corn
期刊论文