资源类型

期刊论文 92

年份

2023 7

2022 7

2021 9

2020 3

2019 1

2018 2

2017 10

2016 1

2015 4

2014 5

2013 11

2012 6

2011 2

2010 4

2009 2

2008 6

2007 3

2006 2

2004 1

2003 1

展开 ︾

关键词

难加工材料 2

高速切削 2

Mallat算法 1

Meyer小波变换 1

Windows'95 1

β-粒子的横向振动 1

三维扫描振镜 1

三维测量 1

三维细观模拟 1

云降水微物理参数 1

人员疏散 1

仪器生产 1

侧流免疫检测试纸条 1

信息处理 1

信息物理系统 (CPS) 1

光学元件;精密制造;超精密机床;超精密加工;光学加工 1

分布式计算机控制系统 1

分形几何 1

切割效率 1

展开 ︾

检索范围:

排序: 展示方式:

Variable eccentric distance-based tool path generation for orthogonal turn-milling

Fangyu PENG,Wei WANG,Rong YAN,Xianyin DUAN,Bin LI

《机械工程前沿(英文)》 2015年 第10卷 第4期   页码 352-366 doi: 10.1007/s11465-015-0361-y

摘要:

This study proposes an algorithm for maximizing strip width in orthogonal turn-milling based on variable eccentric distance. The machining error model is first established based on the local cutting profile at the contact line. The influencing factors of the strip width are then investigated to analyze their features and determine an optimizing strategy. The optimized model for maximum machining strip width is formulated by adopting a variable eccentric distance. Hausdorff distance and Fréchet distance are introduced in this study to implement the constraint function of the machining error in the optimized model. The computing procedure is subsequently provided. Simulations and experiments have been conducted to verify the effectiveness of the proposed algorithm.

关键词: orthogonal turn-milling     variable eccentric distance     local cutting profile     machining strip-width maximization    

Flow and heat transfer in compact offset strip fin surfaces

DONG Junqi, CHEN Jiangping, CHEN Zhijiu

《能源前沿(英文)》 2008年 第2卷 第3期   页码 291-297 doi: 10.1007/s11708-008-0061-y

摘要: Experimental studies of air-side heat transfer and pressure drop characteristics of offset strip fins and flat tube heat exchangers were performed. A series of tests were conducted for 9 heat exchangers with different fin space, fi

关键词: different     air-side     transfer     pressure     offset    

Calculation methods of the crack width and deformation for concrete beams with high-strength steel bars

Jianmin ZHOU, Shuo CHEN, Yang CHEN

《结构与土木工程前沿(英文)》 2013年 第7卷 第3期   页码 316-324 doi: 10.1007/s11709-013-0211-0

摘要: Three groups of concrete beams reinforced with high-strength steel bars were tested, and the crack width and deformation of the specimens were observed and studied. To facilitate the predictions, two simplified formulations according to a theory developed by the first author were proposed. The advantages of the formulations were verified by the test data and compared with several formulas in different codes.

关键词: concrete beam     high-strength steel bar     crack width     deformation    

Undrained seismic bearing capacity of strip footing adjacent to a heterogeneous excavation

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 566-583 doi: 10.1007/s11709-023-0905-x

摘要: The analysis of the bearing capacity of strip footings sited near an excavation is critical in geotechnics. In this study, the effects of the geometrical features of the excavation and the soil strength properties on the seismic bearing capacity of a strip footing resting on an excavation were evaluated using the lower and upper bounds of the finite element limit analysis method. The effects of the setback distance ratio (L/B), excavation height ratio (H/B), soil strength heterogeneity (kB/cu), and horizontal earthquake coefficient (kh) were analyzed. Design charts and tables were produced to clarify the relationship between the undrained seismic bearing capacity and the selected parameters.

关键词: excavation     finite element limit analysis     heterogeneous soil     strip footing     undrained bearing capacity    

Equipment–process–strategy integration for sustainable machining: a review

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0752-4

摘要: Although the manufacturing industry has improved the quality of processing, optimization and upgrading must be performed to meet the requirements of global sustainable development. Sustainable production is considered to be a favorable strategy for achieving machining upgrades characterized by high quality, high efficiency, energy savings, and emission reduction. Sustainable production has aroused widespread interest, but only a few scholars have studied the sustainability of machining from multiple dimensions. The sustainability of machining must be investigated multidimensionally and accurately. Thus, this study explores the sustainability of machining from the aspects of equipment, process, and strategy. In particular, the equipment, process, and strategy of sustainable machining are systematically analyzed and integrated into a research framework. Then, this study analyzes sustainable machining-oriented machining equipment from the aspects of machine tools, cutting tools, and materials such as cutting fluid. Machining processes are explored as important links of sustainable machining from the aspects of dry cutting, microlubrication, microcutting, low-temperature cutting, and multidirectional cutting. The strategies for sustainable machining are also analyzed from the aspects of energy-saving control, machining simulation, and process optimization of machine tools. Finally, opportunities and challenges, including policies and regulations toward sustainable machining, are discussed. This study is expected to offer prospects for sustainable machining development and strategies for implementing sustainable machining.

关键词: sustainable machining     equipment     process     strategy     manufacturing    

Energy saving design of the machining unit of hobbing machine tool with integrated optimization

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0694-2

摘要: The machining unit of hobbing machine tool accounts for a large portion of the energy consumption during the operating phase. The optimization design is a practical means of energy saving and can reduce energy consumption essentially. However, this issue has rarely been discussed in depth in previous research. A comprehensive function of energy consumption of the machining unit is built to address this problem. Surrogate models are established by using effective fitting methods. An integrated optimization model for reducing tool displacement and energy consumption is developed on the basis of the energy consumption function and surrogate models, and the parameters of the motor and structure are considered simultaneously. Results show that the energy consumption and tool displacement of the machining unit are reduced, indicating that energy saving is achieved and the machining accuracy is guaranteed. The influence of optimization variables on the objectives is analyzed to inform the design.

关键词: energy saving design     energy consumption     machining unit     integrated optimization     machine tool    

Fixturing technology and system for thin-walled parts machining: a review

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0711-5

摘要: During the overall processing of thin-walled parts (TWPs), the guaranteed capability of the machining process and quality is determined by fixtures. Therefore, reliable fixtures suitable for the structure and machining process of TWP are essential. In this review, the key role of fixtures in the manufacturing system is initially discussed. The main problems in machining and workholding due to the characteristics of TWP are then analyzed in detail. Afterward, the definition of TWP fixtures is reinterpreted from narrow and broad perspectives. Fixture functions corresponding to the issues of machining and workholding are then clearly stated. Fixture categories are classified systematically according to previous research achievements, and the operation mode, functional characteristics, and structure of each fixture are comprehensively described. The function and execution mode of TWP fixtures are then systematically summarized and analyzed, and the functions of various TWP fixtures are evaluated. Some directions for future research on TWP fixtures technology are also proposed. The main purpose of this review is to provide some reference and guidance for scholars to examine TWP fixtures.

关键词: thin-walled part (TWP)     fixture     machining     fixture categories     fixture function    

Ribbed strip rolling by three-dimensional finite element method combining extremely thin array of elements

Zhengyi JIANG,

《机械工程前沿(英文)》 2010年 第5卷 第1期   页码 52-60 doi: 10.1007/s11465-009-0087-9

摘要: In this paper, a three-dimensional finite element modelling of the ribbed strip rolling is carried out, coupling the use of an extremely thin array of elements that is equivalent to the calculation of the additional shear deformation work rate occurred by the velocity discontinuity in the roll bite. The formulation of the finite element modelling by adding a rib inclined contact surface boundary condition is derived, and the performance of the proposed method is conducted. The simulated rib height, forward slip, and the pulling down of rib height have been compared with the measured values and are in good agreement. The equivalent strain rate of the rib was obtained in the simulation. The effect of the rib inclined angle on pulling down of rib height has also been discussed, which is helpful in optimizing the design of the rib inclined angle.

关键词: rib inclined contact boundary condition     ribbed strip     extremely thin elements     pulling down of rib height     finite element modelling    

Recent advances in micro- and nano-machining technologies

Shang GAO, Han HUANG

《机械工程前沿(英文)》 2017年 第12卷 第1期   页码 18-32 doi: 10.1007/s11465-017-0410-9

摘要:

Device miniaturization is an emerging advanced technology in the 21st century. The miniaturization of devices in different fields requires production of micro- and nano-scale components. The features of these components range from the sub-micron to a few hundred microns with high tolerance to many engineering materials. These fields mainly include optics, electronics, medicine, bio-technology, communications, and avionics. This paper reviewed the recent advances in micro- and nano-machining technologies, including micro-cutting, micro-electrical-discharge machining, laser micro-machining, and focused ion beam machining. The four machining technologies were also compared in terms of machining efficiency, workpiece materials being machined, minimum feature size, maximum aspect ratio, and surface finish.

关键词: micro machining     cutting     electro discharge machining (EDM)     laser machining     focused ion beam (FIB)    

Influence of nozzle height to width ratio on ignition and NO

Liutao SUN, Yonghong YAN, Rui SUN, Zhengkang PENG, Chunli XING, Jiangquan WU

《能源前沿(英文)》 2021年 第15卷 第2期   页码 431-448 doi: 10.1007/s11708-021-0726-3

摘要: To improve the ignition behavior and to reduce the high NO emissions of blended pulverized fuels (PF) of semicoke (SC), large-scale experiments were conducted in a 300 kW fired furnace at various nozzle settings, i.e., ratios (denoted by / ) of the height of the rectangular burner nozzle to its width of 1.65, 2.32, and 3.22. The combustion tests indicate that the flame stability, ignition performance, and fuel burnout ratio were significantly improved at a nozzle setting of / = 2.32. The smaller / delayed ignition and caused the flame to concentrate excessively on the axis of the furnace, while the larger / easily caused the deflection of the pulverized coal flame, and a high-temperature flame zone emerged close to the furnace wall. NO emissions at the outlet of the primary zone decreased from 447 to 354 mg/m (O = 6%), and the ignition distance decreased from 420 to 246 mm when the / varied from 1.65 to 3.22. Furthermore, the ratio (denoted by / ) of the strong reduction zone area to the combustion reaction zone area was defined experimentally by the CO concentration to evaluate the reduction zone. The / rose monotonously, but its restraining effects on NO formation decreased as / increased. The results suggested that in a test furnace, regulating the nozzle / conditions sharply reduces NO emissions and improves the combustion efficiency of SC blends possessing an appropriate jet rigidity.

关键词: rectangular jet burner     nozzle height to width ratio     ignition characteristics     pyrolyzed semicoke (SC) and bituminous blend     NOx formation    

Experimental investigation on heat transfer effect of conical strip inserts in a circular tube under

M. ARULPRAKASAJOTHI,K. ELANGOVAN,K. HEMA CHANDRA REDDY,S. SURESH

《能源前沿(英文)》 2016年 第10卷 第2期   页码 136-142 doi: 10.1007/s11708-015-0389-z

摘要: The aim of this paper is to observe the Nusselt number and friction factor behavior of the circular tube with conical strip inserts as turbulators in a laminar flow condition, using staggered and non-staggered conical strips with three different twist ratios ( = 2, 3 and 5). The conical strip is inserted in the forward and backward direction individually compared to the flow of water which is the working fluid. The results indicate that the conical strip inserts increases the Nusselt number when compared to the plain surface tube. It is observed that the strip geometry has a major effect on the thermal performance of the circular tube. On examination of different strips for determining the enhancement of Nusselt number, the staggered conical strip with the twist ratio of = 3 has given a better result compared to the other two strips. Finally, correlations have been derived using regression analysis for predicting the Nusselt number and friction factor.

关键词: Nusselt number     friction factor     conical strip    

Ultimate bearing capacity of strip footing resting on clay soil mixed with tire-derived aggregates

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1016-1024 doi: 10.1007/s11709-021-0751-7

摘要: This study investigated the use of recycled tire-derived aggregate (TDA) mixed with kaolin as a method of increasing the ultimate bearing capacity ( UBC) of a strip footing. Thirteen 1g physical modeling tests were prepared in a rigid box of 0.6 m × 0.9 m in plan and 0.6 m in height. During sample preparation, 0%, 20%, 40%, or 60% (by weight) of powdery, shredded, small-sized granular (G 1–4 mm) or large-sized granular (G 5–8 mm) TDA was mixed with the kaolin. A strip footing was then placed on the stabilized kaolin and was caused to fail under stress-controlled conditions to determine the UBC. A rigorous 3D finite element analysis was developed in Optum G-3 to determine the UBC values based on the experimental test results. The experimental results showed that, except for the 20% powdery TDA, the TDA showed an increase in the UBC of the strip footing. When kaolin mixed with 20% G (5–8 mm), the UBC showed a threefold increase over that for the unreinforced case. The test with 20% G (1–4 mm) recorded the highest subgrade modulus. It was observed that the UBC calculated using finite element modeling overestimated the experimental UBC by an average of 9%.

关键词: kaolin     physical modeling tests     stabilization     numerical modeling    

Nanoparticle-enhanced coolants in machining: mechanism, application, and prospects

《机械工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11465-023-0769-8

摘要: Nanoparticle-enhanced coolants (NPECs) are increasingly used in minimum quantity lubrication (MQL) machining as a green lubricant to replace conventional cutting fluids to meet the urgent need for carbon emissions and achieve sustainable manufacturing. However, the thermophysical properties of NPEC during processing remain unclear, making it difficult to provide precise guidance and selection principles for industrial applications. Therefore, this paper reviews the action mechanism, processing properties, and future development directions of NPEC. First, the laws of influence of nano-enhanced phases and base fluids on the processing performance are revealed, and the dispersion stabilization mechanism of NPEC in the preparation process is elaborated. Then, the unique molecular structure and physical properties of NPECs are combined to elucidate their unique mechanisms of heat transfer, penetration, and anti-friction effects. Furthermore, the effect of NPECs is investigated on the basis of their excellent lubricating and cooling properties by comprehensively and quantitatively evaluating the material removal characteristics during machining in turning, milling, and grinding applications. Results showed that turning of Ti‒6Al‒4V with multi-walled carbon nanotube NPECs with a volume fraction of 0.2% resulted in a 34% reduction in tool wear, an average decrease in cutting force of 28%, and a 7% decrease in surface roughness Ra, compared with the conventional flood process. Finally, research gaps and future directions for further applications of NPECs in the industry are presented.

关键词: nanoparticle-enhanced coolant     minimum quantity lubrication     biolubricant     thermophysical properties     turning     milling     grinding    

Simulation of abrasive flow machining process for 2D and 3D mixture models

Rupalika DASH,Kalipada MAITY

《机械工程前沿(英文)》 2015年 第10卷 第4期   页码 424-432 doi: 10.1007/s11465-015-0366-6

摘要:

Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a Newtonian fluid and the flow laminar with no wall slip.

关键词: abrasive flow machining (AFM)     computational fluid dynamics (CFD) modeling     mixture model    

A review of low-temperature plasma-assisted machining: from mechanism to application

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0734-y

摘要: Materials with high hardness, strength or plasticity have been widely used in the fields of aviation, aerospace, and military, among others. However, the poor machinability of these materials leads to large cutting forces, high cutting temperatures, serious tool wear, and chip adhesion, which affect machining quality. Low-temperature plasma contains a variety of active particles and can effectively adjust material properties, including hardness, strength, ductility, and wettability, significantly improving material machinability. In this paper, we first discuss the mechanisms and applications of low-temperature plasma-assisted machining. After introducing the characteristics, classifications, and action mechanisms of the low-temperature plasma, we describe the effects of the low-temperature plasma on different machining processes of various difficult-to-cut materials. The low-temperature plasma can be classified as hot plasma and cold plasma according to the different equilibrium states. Hot plasma improves material machinability via the thermal softening effect induced by the high temperature, whereas the main mechanisms of the cold plasma can be summarized as chemical reactions to reduce material hardness, the hydrophilization effect to improve surface wettability, and the Rehbinder effect to promote fracture. In addition, hybrid machining methods combining the merits of the low-temperature plasma and other energy fields like ultrasonic vibration, liquid nitrogen, and minimum quantity lubrication are also described and analyzed. Finally, the promising development trends of low-temperature plasma-assisted machining are presented, which include more precise control of the heat-affected zone in hot plasma-assisted machining, cold plasma-assisted polishing of metal materials, and further investigations on the reaction mechanisms between the cold plasma and other materials.

关键词: low-temperature plasma     difficult-to-cut material     machinability     hydrophilization effect     Rehbinder effect    

标题 作者 时间 类型 操作

Variable eccentric distance-based tool path generation for orthogonal turn-milling

Fangyu PENG,Wei WANG,Rong YAN,Xianyin DUAN,Bin LI

期刊论文

Flow and heat transfer in compact offset strip fin surfaces

DONG Junqi, CHEN Jiangping, CHEN Zhijiu

期刊论文

Calculation methods of the crack width and deformation for concrete beams with high-strength steel bars

Jianmin ZHOU, Shuo CHEN, Yang CHEN

期刊论文

Undrained seismic bearing capacity of strip footing adjacent to a heterogeneous excavation

期刊论文

Equipment–process–strategy integration for sustainable machining: a review

期刊论文

Energy saving design of the machining unit of hobbing machine tool with integrated optimization

期刊论文

Fixturing technology and system for thin-walled parts machining: a review

期刊论文

Ribbed strip rolling by three-dimensional finite element method combining extremely thin array of elements

Zhengyi JIANG,

期刊论文

Recent advances in micro- and nano-machining technologies

Shang GAO, Han HUANG

期刊论文

Influence of nozzle height to width ratio on ignition and NO

Liutao SUN, Yonghong YAN, Rui SUN, Zhengkang PENG, Chunli XING, Jiangquan WU

期刊论文

Experimental investigation on heat transfer effect of conical strip inserts in a circular tube under

M. ARULPRAKASAJOTHI,K. ELANGOVAN,K. HEMA CHANDRA REDDY,S. SURESH

期刊论文

Ultimate bearing capacity of strip footing resting on clay soil mixed with tire-derived aggregates

期刊论文

Nanoparticle-enhanced coolants in machining: mechanism, application, and prospects

期刊论文

Simulation of abrasive flow machining process for 2D and 3D mixture models

Rupalika DASH,Kalipada MAITY

期刊论文

A review of low-temperature plasma-assisted machining: from mechanism to application

期刊论文