资源类型

期刊论文 3

年份

2021 1

2016 1

2015 1

关键词

检索范围:

排序: 展示方式:

Performance enhancement of partially shaded solar PV array using novel shade dispersion technique

Namani RAKESH,T. Venkata MADHAVARAM

《能源前沿(英文)》 2016年 第10卷 第2期   页码 227-239 doi: 10.1007/s11708-016-0405-y

摘要: Solar photo voltaic array (SPVA) generates a smaller amount of power than the standard rating of the panel due to the partial shading effect. Since the modules of the arrays receive different solar irradiations, the P-V characteristics of photovoltaic (PV) arrays contain multiple peaks or local peaks. This paper presents an innovative method (magic square) in order to increase the generated power by configuring the modules of a shaded photovoltaic array. In this approach, the physical location of the modules in the total cross tied (TCT) connected in the solar PV array is rearranged based on the magic square arrangement pattern. This connection is done without altering any electrical configurations of the modules in the PV array. This method can distribute the shading effect over the entire PV array, without concentrating on any row of modules and can achieve global peaks. For different types of shading patterns, the output power of the solar PV array with the proposed magic square configuration is compared with the traditional configurations and the performance is calculated. This paper presents a new reconfiguration technique for solar PV arrays, which increases the PV power under different shading conditions. The proposed technique facilitates the distribution of the effect of shading over the entire array, thereby, reducing the mismatch losses caused by partial shading. The theoretical calculations are tested through simulations in Matlab/Simulink to validate the results. A comparison of power loss for different types of topologies under different types of shading patterns for a 4 × 4 array is also explained.

关键词: photovoltaic cells     mismatch loss     shading patterns     partial shading     magic square     power enhancement     global peaks and total cross tied (TCT)    

Current perspectives on shoot branching regulation

Cunquan YUAN,Lin XI,Yaping KOU,Yu ZHAO,Liangjun ZHAO

《农业科学与工程前沿(英文)》 2015年 第2卷 第1期   页码 38-52 doi: 10.15302/J-FASE-2015053

摘要: Shoot branching is regulated by the complex interactions among hormones, development, and environmental factors. Recent studies into the regulatory mecha-nisms of shoot branching have focused on strigolactones, which is a new area of investigation in shoot branching regulation. Elucidation of the function of the gene has allowed exploration of detailed mechanisms of action of strigolactones in regulating shoot branching. In addition, the recent discovery that sucrose is key for axillary bud release has challenged the established auxin theory, in which auxin is the principal agent in the control of apical dominance. These developments increase our understan-ding of branching control and indicate that regulation of shoot branching involves a complex network. Here, we first summarize advances in the systematic regulatory network of plant shoot branching based on current information. Then we describe recent developments in the synthesis and signal transduction of strigolactones. Based on these considerations, we further summarize the plant shoot branching regulatory network, including long distance systemic signals and local gene activity mediated by strigolactones following perception of external envi-ronmental signals, such as shading, in order to provide a comprehensive overview of plant shoot branching.

关键词: sugar demand     apical dominance     decapitation     shade     shoot branching     strigolactones    

Numerical study of thermal characteristics of double skin facade system with middle shade

Shaoning LIU, Xiangfei KONG, Hua YANG, Minchao FAN, Xin ZHAN

《能源前沿(英文)》 2021年 第15卷 第1期   页码 222-234 doi: 10.1007/s11708-017-0480-8

摘要: Architectural shade is an effective method for improving building energy efficiency. A new shade combined with the double skin façade (DSF) system, called middle shade (MS), was introduced and developed for buildings. In this paper, a 3D dynamic simulation was conducted to analyze the influence of MS combined with DSF on the indoor thermal characteristics. The research on MS for DSF involves the temperature, the ventilation rate, the velocity distribution of the air flow duct, and the indoor temperature. The results show that the angle and position of the shade in the three seasons are different, and different conditions effectively enhance the indoor thermal characteristics. In summer, the appearance of MS in DSF makes the indoor temperature significantly lower. The indoor temperature is obviously lower than that of the air flow duct, and the temperature of the air flow duct is less affected by MS. The influence of the position of blinds on indoor temperature and ventilation rate is greater than the influence of the angle of blinds. According to the climate characteristics of winter and transition season, in winter, early spring, and late autumn, the indoor temperature decreases with the increase of the position of blinds at daytime, but the opposite is true at night. The results found in this paper can provide reference for the design and use of MS combined with DSF in hot summer and cold winter zone.

关键词: middle shade     position     thermal characteristics     double skin facade    

标题 作者 时间 类型 操作

Performance enhancement of partially shaded solar PV array using novel shade dispersion technique

Namani RAKESH,T. Venkata MADHAVARAM

期刊论文

Current perspectives on shoot branching regulation

Cunquan YUAN,Lin XI,Yaping KOU,Yu ZHAO,Liangjun ZHAO

期刊论文

Numerical study of thermal characteristics of double skin facade system with middle shade

Shaoning LIU, Xiangfei KONG, Hua YANG, Minchao FAN, Xin ZHAN

期刊论文