资源类型

期刊论文 2

年份

2020 1

2018 1

关键词

检索范围:

排序: 展示方式:

Influence evaluation of loading conditions during pressurized thermal shock transients based on thermal-hydraulics

Jinya KATSUYAMA, Shumpei UNO, Tadashi WATANABE, Yinsheng LI

《机械工程前沿(英文)》 2018年 第13卷 第4期   页码 563-570 doi: 10.1007/s11465-018-0487-9

摘要:

The thermal hydraulic (TH) behavior of coo-lant water is a key factor in the structural integrity assessments on reactor pressure vessels (RPVs) of pressurized water reactors (PWRs) under pressurized thermal shock (PTS) events, because the TH behavior may affect the loading conditions in the assessment. From the viewpoint of TH behavior, configuration of plant equipment and their dimensions, and operator action time considerably influence various parameters, such as the temperature and flow rate of coolant water and inner pressure. In this study, to investigate the influence of the operator action time on TH behavior during a PTS event, we developed an analysis model for a typical Japanese PWR plant, including the RPV and the main components of both primary and secondary systems, and performed TH analyses by using a system analysis code called RELAP5. We applied two different operator action times based on the Japanese and the United States (US) rules: Operators may act after 10 min (Japanese rules) and 30 min (the US rules) after the occurrence of PTS events. Based on the results of TH analysis with different operator action times, we also performed structural analyses for evaluating thermal-stress distributions in the RPV during PTS events as loading conditions in the structural integrity assessment. From the analysis results, it was clarified that differences in operator action times significantly affect TH behavior and loading conditions, as the Japanese rule may lead to lower stresses than that under the US rule because an earlier operator action caused lower pressure in the RPV.

关键词: structural integrity     reactor pressure vessel     pressurized thermal shock     thermal hydraulic analysis     pressurized water reactor     weld residual stress    

Thermal and hydraulic characteristics of a large-scaled parabolic trough solar field (PTSF) under cloud passages

Linrui MA, Zhifeng WANG, Ershu XU, Li XU

《能源前沿(英文)》 2020年 第14卷 第2期   页码 283-297 doi: 10.1007/s11708-019-0649-4

摘要: To better understand the characteristics of a large-scaled parabolic trough solar field (PTSF) under cloud passages, a novel method which combines a closed-loop thermal hydraulic model (CLTHM) and cloud vector (CV) is developed. Besides, the CLTHM is established and validated based on a pilot plant. Moreover, some key parameters which are used to characterize a typical PTSF and CV are presented for further simulation. Furthermore, two sets of results simulated by the CLTHM are compared and discussed. One set deals with cloud passages by the CV, while the other by the traditionally distributed weather stations (DWSs). Because of considering the solar irradiance distribution in a more detailed and realistically way, compared with the distributed weather station (DWS) simulation, all essential parameters, such as the total flowrate, flow distribution, outlet temperature, thermal and exergetic efficiency, and exergetic destruction tend to be more precise and smoother in the CV simulation. For example, for the runner outlet temperature, which is the most crucial parameter for a running PTSF, the maximum relative error reaches −15% in the comparison. In addition, the mechanism of thermal and hydraulic unbalance caused by cloud passages are explained based on the simulation.

关键词: parabolic trough solar field (PTSF)     thermal hydraulic model     cloud passages     transients    

标题 作者 时间 类型 操作

Influence evaluation of loading conditions during pressurized thermal shock transients based on thermal-hydraulics

Jinya KATSUYAMA, Shumpei UNO, Tadashi WATANABE, Yinsheng LI

期刊论文

Thermal and hydraulic characteristics of a large-scaled parabolic trough solar field (PTSF) under cloud passages

Linrui MA, Zhifeng WANG, Ershu XU, Li XU

期刊论文