资源类型

期刊论文 1920

年份

2023 119

2022 139

2021 126

2020 112

2019 110

2018 121

2017 116

2016 96

2015 116

2014 80

2013 77

2012 56

2011 71

2010 84

2009 64

2008 55

2007 71

2006 58

2005 43

2004 35

展开 ︾

关键词

指标体系 12

系统工程 11

可持续发展 9

海上风电场 9

制造强国 8

开放的复杂巨系统 7

系统集成 7

钱学森 7

技术体系 6

制造业 5

发展战略 5

汽车强国 5

海上风电 5

系统科学 5

仿真 4

创新 4

战略性新兴产业 4

智能制造 4

标准体系 4

展开 ︾

检索范围:

排序: 展示方式:

A comprehensive review of wind power based power system frequency regulation

《能源前沿(英文)》 2023年 第17卷 第5期   页码 611-634 doi: 10.1007/s11708-023-0876-6

摘要: Wind power (WP) is considered as one of the main renewable energy sources (RESs) for future low-carbon and high-cost-efficient power system. However, its low inertia characteristic may threaten the system frequency stability of the power system with a high penetration of WP generation. Thus, the capability of WP participating in the system frequency regulation has become a research hotspot. In this paper, the impact of WP on power system frequency stability is initially presented. In addition, various existing control strategies of WP participating in frequency regulation are reviewed from the wind turbine (WT) level to the wind farm (WF) level, and their performances are compared in terms of operating principles and practical applications. The pros and cons of each control strategy are also discussed. Moreover, the WP combing with energy storage system (ESS) for system frequency regulation is explored. Furthermore, the prospects, future challenges, and solutions of WP participating in power system frequency regulation are summarized.

关键词: frequency regulation strategies     wind turbine generators     grid-forming control     model predictive control     energy storage system    

Framework design of a hybrid energy system by combining wind farm with small gas turbine power plants

Nengsheng BAO, Weidou NI,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 205-210 doi: 10.1007/s11708-009-0073-2

摘要: Owing to the stochastic characteristic of natural wind speed, the output fluctuation of wind farm has a negative impact on power grid when a large-scale wind farm is connected to a power grid. It is very difficult to overcome this impact only by wind farm itself. A novel power system called wind-gas turbine hybrid energy system was discussed, and the framework design of this hybrid energy system was presented in detail in this paper. The hybrid energy system combines wind farm with several small gas turbine power plants to form an integrated power station to provide a relatively firm output power. The small gas turbine power plant has such special advantages as fast start-up, shutdown, and quick load regulation to fit the requirement of the hybrid energy system. Therefore, the hybrid energy system uses the output from the small gas turbine power plants to compensate for the output fluctuation from the wind farm for the firm output from the whole power system. To put this hybrid energy system into practice, the framework must be designed first. The capacity of the wind farm is chosen according to the capacity and units of small gas turbine power plants, load requirement from power grid, and local wind energy resource distribution. Finally, a framework design case of hybrid energy system was suggested according to typical wind energy resource in Xinjiang Autonomous Region in China.

关键词: framework design     hybrid energy system     wind farm     gas turbine power plants    

Load frequency control in deregulated power system with wind integrated system using fuzzy controller

Yajvender Pal VERMA, Ashwani KUMAR

《能源前沿(英文)》 2013年 第7卷 第2期   页码 245-254 doi: 10.1007/s11708-012-0218-6

摘要: This paper presents the analysis of load frequency control (LFC) of a deregulated two-area hydro-thermal power system using fuzzy logic controller, with doubly fed induction generators (DFIGs) integrated into both the control areas. The deregulation of power sector has led to the formation of new companies for generation, transmission and distribution of power. The conventional two-area power system is modified to study the effects of the bilateral contracts of companies on the system dynamics. Deregulation creates highly competitive and distributed control environment, and the LFC becomes even more challenging when wind generators are also integrated into the system. The overall inertia of the system reduces, as the wind unit does not provide inertia and isolates from the grid during disturbances. The DFIGs integrated provide inertial support to the system through modified inertial control scheme, and arrests the initial fall in frequency after disturbance. The inertial control responds to frequency deviations, which takes out the kinetic energy of the wind turbine for improving the frequency response of the system. To enhance the participation of the doubly fed induction generator (DFIG) in the frequency control, optimal values of the speed control parameters of the DFIG-based wind turbine have been obtained using integral square error (ISE) technique. The dynamics of the system have been obtained for a small load perturbation, and for contract violation using fuzzy controller.

关键词: frequency regulation     fuzzy controller     de-regulated power system     doubly fed induction generator (DFIG)     bilateral contract    

Impact of wind power generating system integration on frequency stabilization in multi-area power system

Y. K. BHATESHVAR,H. D. MATHUR,H. SIGUERDIDJANE

《能源前沿(英文)》 2015年 第9卷 第1期   页码 7-21 doi: 10.1007/s11708-014-0338-2

摘要: Among the available options for renewable energy integration in existing power system, wind power is being considered as one of the suited options for future electrical power generation. The major constraint of wind power generating system (WPGS) is that it does not provide inertial support because of power electronic converters between the grid and the WPGS to facilitate frequency stabilization. The proposed control strategy suggests a substantial contribution to system inertia in terms of short-term active power support in a two area restructured power system. The control scheme uses fuzzy logic based design and takes frequency deviation as input to provide quick active power support, which balances the drop in frequency and tie-line power during transient conditions. This paper presents a comprehensive study of the wind power impact with increasing wind power penetration on frequency stabilization in restructured power system scenario. Variation of load conditions are also analyzed in simulation studies for the same power system model with the proposed control scheme. Simulation results advocates the justification of control scheme over other schemes.

关键词: two area power system     automatic generation control     wind power generating system (WPGS)     deregulated environment     fuzzy logic controller (FLC)    

Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system andRBFNSM for wind turbine in the grid connected mode

Alireza REZVANI,Ali ESMAEILY,Hasan ETAATI,Mohammad MOHAMMADINODOUSHAN

《能源前沿(英文)》 2019年 第13卷 第1期   页码 131-148 doi: 10.1007/s11708-017-0446-x

摘要: Photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is intermittent because of depending on weather conditions. Therefore, the wind power can be considered to assist for a stable and reliable output from the PV generation system for loads and improve the dynamic performance of the whole generation system in the grid connected mode. In this paper, a novel topology of an intelligent hybrid generation system with PV and wind turbine is presented. In order to capture the maximum power, a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. The average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison with the conventional methods. The pitch angle of the wind turbine is controlled by radial basis function network-sliding mode (RBFNSM). Different conditions are represented in simulation results that compare the real power values with those of the presented methods. The obtained results verify the effectiveness and superiority of the proposed method which has the advantages of robustness, fast response and good performance. Detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink.

关键词: photovoltaic     wind turbine     hybrid system     fuzzy logic controller     genetic algorithm     RBFNSM    

A novel method to investigate voltage stability of IEEE-14 bus wind integrated system using PSAT

Satish KUMAR,Ashwani KUMAR,N. K. SHARMA

《能源前沿(英文)》 2020年 第14卷 第2期   页码 410-418 doi: 10.1007/s11708-016-0440-8

摘要: The maximum demand of power utilization is increasing exponentially from base load to peak load in day to day life. This power demand may be either industrial usage or household applications. To meet this high maximum power demand by the consumer, one of the options is the integration of renewable energy resources with conventional power generation methods. In the present scenario, wind energy system is one of the methods to generate power in connection with the conventional power systems. When the load on the conventional grid system increases, various bus voltages of the system tend to decrease, causing serious voltage drop or voltage instability within the system. In view of this, identification of weak buses within the system has become necessary. This paper presents the line indices method to identify these weak buses, so that some corrective action may be taken to compensate for this drop in voltage. An attempt has been made to compensate these drops in voltages by integration of renewable energy systems. The wind energy system at one of the bus in the test system is integrated and the performance of the system is verified by calculating the power flow (PF) using the power system analysis tool box (PSAT) and line indices of the integrated test system. The PF and load flow results are used to calculate line indices for the IEEE-14 bus test system which is simulated on PSAT.

关键词: voltage stability     line indices     power system analysis tool box (PSAT)     wind system     line loading     power flow (PF)    

Tianrun Xia County phase III 99.5 MW wind power engineering technology and green innovation

Xiaobo WANG

《工程管理前沿(英文)》 2019年 第6卷 第1期   页码 131-137 doi: 10.1007/s42524-019-0012-9

摘要:

关键词: low carbon design     green standard system     environmental protection     sustainable development     Tianrun Sijiao Town wind farm    

风力发电变流器发展现状与展望

马伟明,肖飞

《中国工程科学》 2011年 第13卷 第1期   页码 11-20

摘要:

风电机组宽泛的使用环境,使作为机组关键设备之一的大容量变流器必须满足高功率密度、高可靠性与优良控制性能等要求。国产风电变流器的研发近几年有了较快的发展,但总体上依然落后于国外先进水平。文章对风电变流器,重点是直驱式全功率变流器的若干关键技术做了介绍,给出了相关问题的解决思路。

关键词: 风力发电     变速恒频     双馈型     直驱型     变流器    

Wind-diesel hybrid power system integration in the south Algeria

Khaireddine ALLALI,El Bahi AZZAG,Nabil KAHOUL

《能源前沿(英文)》 2015年 第9卷 第3期   页码 259-271 doi: 10.1007/s11708-015-0367-5

摘要: In most isolated sites situated in south Algeria, the diesel generators are the major source of electrical energy. Indeed, the power supply of these remote regions still poses order problems (technical, economical and ecological). The electricity produced with the help of diesel generators is very expensive and responsible for CO emission. These isolated sites have significant wind energy potential. Hence, the use of twinning wind-diesel is widely recommended, especially to reduce operating deficits. The objective of this paper is to study the global modeling of a hybrid system which compounds wind turbine generator, diesel generator and storage system. This model is based on the control strategy to optimize the functioning of the hybrid system and to consolidate the gains to provide proper management of energy sources (wind, diesel, battery) depending on the load curve of the proposed site. The management is controlled by a controller which ensures the opening/closing of different power switches according to meteorological conditions (wind speed, air mass, temperature, etc).

关键词: wind-diesel     storage system     isolated site     management     simulation    

风氢互补发电系统构建初探

徐晔,陈晓宁

《中国工程科学》 2010年 第12卷 第11期   页码 83-88

摘要:

为了解决风力发电输出功率的不平稳性和电压的波动性,以解决并网的瓶颈问题,提出风氢互补发电系统,将风力发电输出“波谷”对应的可控出力作为风电场能保证恒定输出的功率,“波峰”至“波谷”之间对应的不可控的出力,采用“波峰”制氢进行“削峰”、“波谷”氢气发电进行“填谷”的方式进行平衡。并以如东风电场为例进行了实例分析与计算,结果证明采用该风氢互补系统基本能保证发电输出平衡,是解决风电并网有效可行的途径。

关键词: 风力发电     氢能发电     制氢储氢    

A complete modeling and simulation of DFIG based wind turbine system using fuzzy logic control

Abdelhak DIDA,Djilani BENATTOUS

《能源前沿(英文)》 2016年 第10卷 第2期   页码 143-154 doi: 10.1007/s11708-016-0402-1

摘要: The current paper talks about the variable speed wind turbine generation system (WTGS). So, the WTGS is equipped with a doubly-fed induction generator (DFIG) and two bidirectional converters in the rotor open circuit. A vector control (VC) of the rotor side converter (RSC) offers independent regulation of the stator active and reactive power and the optimal rotational speed tracking in the power maximization operating mode. A VC scheme for the grid-side converter (GSC) allows an independent regulation of the active and reactive power to exchange with the grid and sinusoidal supply currents and keeps the DC-link voltage constant. A fuzzy inference system (FIS) is adopted as an alternative of the conventional proportional and integral (PI) controller to reject some uncertainties or disturbance. The performances have been verified using the Matlab/Simulink software.

关键词: wind turbine generation system (WTGS)     doubly-fed induction generator (DFIG)     maximum power point tracking (MPPT)     vector control (VC)     fuzzy logic controller (FLC)    

Novel power capture optimization based sensorless maximum power point tracking strategy and internalmodel controller for wind turbines systems driven SCIG

Ali EL YAAKOUBI,Kamal ATTARI,Adel ASSELMAN,Abdelouahed DJEBLI

《能源前沿(英文)》 2019年 第13卷 第4期   页码 742-756 doi: 10.1007/s11708-017-0462-x

摘要: Under the trends to using renewable energy sources as alternatives to the traditional ones, it is important to contribute to the fast growing development of these sources by using powerful soft computing methods. In this context, this paper introduces a novel structure to optimize and control the energy produced from a variable speed wind turbine which is based on a squirrel cage induction generator (SCIG) and connected to the grid. The optimization strategy of the harvested power from the wind is realized by a maximum power point tracking (MPPT) algorithm based on fuzzy logic, and the control strategy of the generator is implemented by means of an internal model (IM) controller. Three IM controllers are incorporated in the vector control technique, as an alternative to the proportional integral (PI) controller, to implement the proposed optimization strategy. The MPPT in conjunction with the IM controller is proposed as an alternative to the traditional tip speed ratio (TSR) technique, to avoid any disturbance such as wind speed measurement and wind turbine (WT) characteristic uncertainties. Based on the simulation results of a six KW-WECS model in Matlab/Simulink, the presented control system topology is reliable and keeps the system operation around the desired response.

关键词: power optimization     wind energy conversion system     maximum power point tracking (MPPT)     fuzzy logic     internal model (IM) controller    

Overview of condition monitoring and operation control of electric power conversion systems in direct-drivewind turbines under faults

Shoudao HUANG, Xuan WU, Xiao LIU, Jian GAO, Yunze HE

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 281-302 doi: 10.1007/s11465-017-0442-1

摘要:

Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the most failures (approximately 60% of the total number) in the entire DD-WT system according to statistical data. To improve the reliability of EPCSs and reduce the operation and maintenance cost of DD-WTs, numerous researchers have studied condition monitoring (CM) and fault diagnostics (FD). Numerous CM and FD techniques, which have respective advantages and disadvantages, have emerged. This paper provides an overview of the CM, FD, and operation control of EPCSs in DD-WTs under faults. After introducing the functional principle and structure of EPCS, this survey discusses the common failures in wind generators and power converters; briefly reviewed CM and FD methods and operation control of these generators and power converters under faults; and discussed the grid voltage faults related to EPCSs in DD-WTs. These theories and their related technical concepts are systematically discussed. Finally, predicted development trends are presented. The paper provides a valuable reference for developing service quality evaluation methods and fault operation control systems to achieve high-performance and high-intelligence DD-WTs.

关键词: direct-drive wind turbine     electric power conversion system     condition monitoring     fault diagnosis     operation control under faults     fault tolerance    

UPFC setting to avoid active power flow loop considering wind power uncertainty

Shenghu LI, Ting WANG

《能源前沿(英文)》 2023年 第17卷 第1期   页码 165-175 doi: 10.1007/s11708-020-0686-z

摘要: The active power loop flow (APLF) may be caused by impropriate network configuration, impropriate parameter settings, and/or stochastic bus powers. The power flow controllers, e.g., the unified power flow controller (UPFC), may be the reason and the solution to the loop flows. In this paper, the critical existence condition of the APLF is newly integrated into the simultaneous power flow model for the system and UPFC. Compared with the existing method of alternatively solving the simultaneous power flow and sensitivity-based approaching to the critical existing condition, the integrated power flow needs less iterations and calculation time. Besides, with wind power fluctuation, the interval power flow (IPF) is introduced into the integrated power flow, and solved with the affine Krawcyzk iteration to make sure that the range of active power setting of the UPFC not yielding the APLF. Compared with Monte Carlo simulation, the IPF has the similar accuracy but less time.

关键词: active power loop flow (APLF)     unified power flow controller (UPFC)     wind power uncertainty     interval power flow (IPF)    

Reactive power compensation of an isolated hybrid power system with load interaction using ANFIS tuned

Nitin SAXENA,Ashwani KUMAR

《能源前沿(英文)》 2014年 第8卷 第2期   页码 261-268 doi: 10.1007/s11708-014-0298-6

摘要: This paper presents an adaptive neuro fuzzy interference system (ANFIS) based approach to tune the parameters of the static synchronous compensator (STATCOM) with frequent disturbances in load model and power input of a wind-diesel based isolated hybrid power system (IHPS). In literature, proportional integral (PI) based controller constants are optimized for voltage stability in hybrid systems due to the interaction of load disturbances and input power disturbances. These conventional controlling techniques use the integral square error (ISE) criterion with an open loop load model. An ANFIS tuned constants of a STATCOM controller for controlling the reactive power requirement to stabilize the voltage variation is proposed in the paper. Moreover, the interaction between the load and the isolated power system is developed in terms of closed loop load interaction with the system. Furthermore, a comparison of transient responses of IHPS is also presented when the system has only the STATCOM and the static compensation requirement of the induction generator is fulfilled by the fixed capacitor, dynamic compensation requirement, meanwhile, is fulfilled by STATCOM. The model is tested for a 1% step increase in reactive power load demand at = 0 s and then a sudden change of 3% from the 1% at = 0.01 s for a 1% step increase in power input at variable wind speed model.

关键词: isolated wind-diesel power system     adaptive neuro fuzzy interference system (ANFIS)     integral square error (ISE) criterion     load interaction    

标题 作者 时间 类型 操作

A comprehensive review of wind power based power system frequency regulation

期刊论文

Framework design of a hybrid energy system by combining wind farm with small gas turbine power plants

Nengsheng BAO, Weidou NI,

期刊论文

Load frequency control in deregulated power system with wind integrated system using fuzzy controller

Yajvender Pal VERMA, Ashwani KUMAR

期刊论文

Impact of wind power generating system integration on frequency stabilization in multi-area power system

Y. K. BHATESHVAR,H. D. MATHUR,H. SIGUERDIDJANE

期刊论文

Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system andRBFNSM for wind turbine in the grid connected mode

Alireza REZVANI,Ali ESMAEILY,Hasan ETAATI,Mohammad MOHAMMADINODOUSHAN

期刊论文

A novel method to investigate voltage stability of IEEE-14 bus wind integrated system using PSAT

Satish KUMAR,Ashwani KUMAR,N. K. SHARMA

期刊论文

Tianrun Xia County phase III 99.5 MW wind power engineering technology and green innovation

Xiaobo WANG

期刊论文

风力发电变流器发展现状与展望

马伟明,肖飞

期刊论文

Wind-diesel hybrid power system integration in the south Algeria

Khaireddine ALLALI,El Bahi AZZAG,Nabil KAHOUL

期刊论文

风氢互补发电系统构建初探

徐晔,陈晓宁

期刊论文

A complete modeling and simulation of DFIG based wind turbine system using fuzzy logic control

Abdelhak DIDA,Djilani BENATTOUS

期刊论文

Novel power capture optimization based sensorless maximum power point tracking strategy and internalmodel controller for wind turbines systems driven SCIG

Ali EL YAAKOUBI,Kamal ATTARI,Adel ASSELMAN,Abdelouahed DJEBLI

期刊论文

Overview of condition monitoring and operation control of electric power conversion systems in direct-drivewind turbines under faults

Shoudao HUANG, Xuan WU, Xiao LIU, Jian GAO, Yunze HE

期刊论文

UPFC setting to avoid active power flow loop considering wind power uncertainty

Shenghu LI, Ting WANG

期刊论文

Reactive power compensation of an isolated hybrid power system with load interaction using ANFIS tuned

Nitin SAXENA,Ashwani KUMAR

期刊论文