Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2012, Volume 6, Issue 1 doi: 10.1007/s11705-011-1162-4

A thermodynamic study of the removal of HCl and H

School of Mechanical and Mining Engineering, the University of Queensland, St Lucia Qld4072, Australia

Available online: 2012-03-05

Next Previous

Abstract

Advanced integrated-gasification combined-cycle (IGCC) and integrated-gasification fuel cell (IFGC) systems require high-temperature sorbents that are capable of removing hydrogen chloride and hydrogen sulfide from coal derived gases to very low levels. HCl and H S are highly reactive, corrosive, and toxic gases that must be removed to meet stringent environmental regulations, to protect power generation equipment and to control the emissions of contaminants. The thermodynamic behavior of 13 sorbents for the removal of HCl and H S under various conditions including: initial toxic gas concentration (1–10000 ppm), operating pressure (0.1–11 Mpa), temperature (300 K–1500 K), and the presence of H O were investigated. The correlation between HCl and H S was also examined. Thermodynamic calculations were carried out for the reactions of the 13 sorbents using a FactSage 5.2 software package based on free energy minimization. The sorbents, Na CO , NaHCO , K CO , and CaO are capable of completely removing chlorine at high temperatures (up to ~1240 K) and at high pressures. Water vapor did not have any significant effects on the dechlorination capability of the sorbents. Nine of the sorbents namely; Cu O, Na CO , NaHCO , K CO , CaO, ZnO, MnO, FeO, and PbO, were determined to have great potential as desulfurization sorbents. Cu O and ZnO had the best performance in terms of the optimum operating temperature. The addition of water vapor to the reactant gas produces a slightly detrimental effect on most of the sorbents, but FeO exhibited the worst performance with a reduction in the maximum operating temperature of about 428 K. The dechlorination performance of the alkali sorbents was not affected by the presence of H S in the reactions. However, the desulfurization capability of some sorbents was greatly affected by the presence of HCl. Particularly, the performance of Cu O was significantly reduced when HCl was present, but the performance of FeO improved remarkably. The thermodynamic results gathered are valuable for the developments of better sorbents.

Related Research