Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2023, Volume 17, Issue 5 doi: 10.1007/s11705-022-2235-2

Highly efficient and selective removal of vanadium from tungstate solutions by microbubble floating-extraction

Received: 2022-06-03 Accepted: 2023-02-28 Available online: 2023-02-28

Next Previous

Abstract

Selective separation of dissolved tungsten and vanadium is of great significance for the utilization of the secondary resources of these elements. In this work, selective removal of vanadium from tungstate solutions via microbubble floating-extraction was systematically investigated. The results indicated that vanadium can be more easily mineralized over tungsten from tungstate solutions using methyl trioctyl ammonium chloride as mineralization reagent under weak alkaline conditions. Owing to the higher bubble and interface mass transfer rates, high-efficiency enrichment and deep separation of vanadium could be achieved easily. Additionally, the deep recovery of tungsten and vanadium from the floated organic phase could be easily realized using a mixed solution of sodium hydroxide and sodium chloride as stripping agents. The separation mechanism mainly included the formation of hydrophobic complexes, their attachment on the surface of rising bubbles, and their mass transfer at the oil–water interface. Under the optimal conditions, the removal efficiency of vanadium reached 98.5% with tungsten loss below 8% after two-stage microbubble floating-extraction. Therefore, the microbubble floating-extraction could be an efficient approach for separating selectively vanadium from tungstate solutions, exhibiting outstanding advantages of high separation efficiency and low consumption of organic solvents.

Related Research