Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2023, Volume 17, Issue 12 doi: 10.1007/s11705-023-2357-1

Molybdenum disulfide@nickel phyllosilicate hybrid for improving the flame retardancy and wear resistance of epoxy composites

Received: 2023-06-04 Accepted: 2023-10-18 Available online: 2023-10-18

Next Previous

Abstract

In this study, nickel phyllosilicate was synthesized based on molybdenum disulfide (MoS2@NiPS) by the sol-gel method, and then MoS2@NiPS was used to prepare epoxy composites. The thermal stability, flame retardancy, and frictional performances of epoxy composites were studied. With the addition of 3 wt% MoS2@NiPS, the epoxy composite increased the limiting oxygen index from 23.8% to 26.1% and reduced the vertical burning time from 166 s for epoxy resin to 35 s. The residual char of the epoxy composite increased from 11.8 to 20.2 wt%. MoS2@NiPS promoted the graphitization of the residual char, and facilitated the formation of a dense and continuous char layer, thereby improving the fire safety of epoxy resin. The epoxy composite with 3 wt% MoS2@NiPS had excellent wear resistance property with a wear rate of 2.19 × 10−5 mm3·N–1·m–1, which was 68.8% lower than that of epoxy resin. This study presented a practical approach to improve the frictional and fire resistance of epoxy composites.

Related Research