Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2023, Volume 17, Issue 12 doi: 10.1007/s11705-023-2360-6

Decoration of CdMoO micron polyhedron with Pt nanoparticle and their enhanced photocatalytic performance in N fixation and water purification

Received: 2023-06-04 Accepted: 2023-10-18 Available online: 2023-10-18

Next Previous

Abstract

This study aimed to prepare and apply a novel Pt/CdMoO4 composite photocatalyst for photocatalytic N2 fixation and tetracycline degradation. The Pt/CdMoO4 composite was subjected to comprehensive investigation on the morphology, structure, optical properties, and photoelectric chemical properties. The results demonstrate the dispersion of Pt nanoparticles on the CdMoO4 surface. Close contact between CdMoO4 and Pt was observed, resulting in the formation of a heterojunction structure at their contact region. Density functional theory calculation and Mott-Schottky analysis revealed that Pt possesses a higher work function value than CdMoO4, resulting in electron drift from CdMoO4 to Pt and the formation of a Schottky barrier. The presence of this barrier increases the separation efficiency of electron-hole pairs, thereby improving the performance of the Pt/CdMoO4 composite in photocatalysis. When exposed to simulated sunlight, the optimal Pt/CdMoO4 catalyst displayed a photocatalytic nitrogen fixation rate of 443.7 μmol·L‒1·g‒1·h‒1, which is 3.2 times higher than that of pure CdMoO4. In addition, the composite also exhibited excellent performance in tetracycline degradation, with hole and superoxide species identified as the primary reactive species. These findings offer practical insights into designing and synthesizing efficient photocatalysts for photocatalytic nitrogen fixation and antibiotics removal.

Related Research