Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2021, Volume 15, Issue 2 doi: 10.1007/s11709-021-0694-z

Effect of seismic wave propagation in massed medium on rate-dependent anisotropic damage growth in concrete gravity dams

. Civil Engineering Department, Sharif University of Technology, Tehran 11155-9313, Iran.. Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran 11155-9313, Iran

Received: 2021-02-07 Accepted: 2021-04-20 Available online: 2021-04-20

Next Previous

Abstract

Seismic modeling of massive structures requires special caution, as wave propagation effects significantly affect the responses. This becomes more crucial when the path-dependent behavior of the material is considered. The coexistence of these conditions renders numerical earthquake analysis of concrete dams challenging. Herein, a finite element model for a comprehensive nonlinear seismic simulation of concrete gravity dams, including realistic soil–structure interactions, is introduced. A semi-infinite medium is formulated based on the domain reduction method in conjunction with standard viscous boundaries. Accurate representation of radiation damping in a half-space medium and wave propagation effects in a massed foundation are verified using an analytical solution of vertically propagating shear waves in a viscoelastic half-space domain. A rigorous nonlinear finite element model requires a precise description of the material response. Hence, a microplane-based anisotropic damage–plastic model of concrete is formulated to reproduce irreversible deformations and tensorial degeneration of concrete in a coupled and rate-dependent manner. Finally, the Koyna concrete gravity dam is analyzed based on different assumptions of foundation, concrete response, and reservoir conditions. Comparison between responses obtained based on conventional assumptions with the results of the presented comprehensive model indicates the significance of considering radiation damping and employing a rigorous constitutive material model, which is pursued for the presented model.

Related Research