Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2022, Volume 16, Issue 7 doi: 10.1007/s11709-022-0863-8

LSSVM-based approach for refining soil failure criteria and calculating safety factor of slopes

Available online: 2022-10-17

Next Previous


The failure criteria of practical soil mass are very complex, and have significant influence on the safety factor of slope stability. The Coulomb strength criterion and the power-law failure criterion are classically simplified. Each one has limited applicability owing to the noticeable difference between calculated predictions and actual results in some cases. In the work reported here, an analysis method based on the least square support vector machine (LSSVM), a machine learning model, is purposefully provided to establish a complex nonlinear failure criterion via iteration computation based on strength test data of the soil, which is of more extensive applicability to many problems of slope stability. In particular, three evaluation indexes including coefficient of determination, mean absolute percentage error, and mean square error indicate that fitting precision of the machine learning-based failure criterion is better than those of the linear Coulomb criterion and nonlinear power-law criterion. Based on the proposed LSSVM approach to determine the failure criterion, the limit equilibrium method can be used to calculate the safety factor of three-dimensional slope stability. Analysis of results of the safety factor of two three-dimensional homogeneous slopes shows that the maximum relative errors between the proposed approach and the linear failure criterion-based method and the power-law failure criterion-based method are about 12% and 7%, respectively.

Related Research