Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2022, Volume 16, Issue 11 doi: 10.1007/s11709-022-0882-5

Bridging finite element and deep learning: High-resolution stress distribution prediction in structural components

Available online: 2022-12-07

Next Previous


Finite-element analysis (FEA) for structures has been broadly used to conduct stress analysis of various civil and mechanical engineering structures. Conventional methods, such as FEA, provide high fidelity results but require the solution of large linear systems that can be computationally intensive. Instead, Deep Learning (DL) techniques can generate results significantly faster than conventional run-time analysis. This can prove extremely valuable in real-time structural assessment applications. Our proposed method uses deep neural networks in the form of convolutional neural networks (CNN) to bypass the FEA and predict high-resolution stress distributions on loaded steel plates with variable loading and boundary conditions. The CNN was designed and trained to use the geometry, boundary conditions, and load as input to predict the stress contours. The proposed technique’s performance was compared to finite-element simulations using a partial differential equation (PDE) solver. The trained DL model can predict the stress distributions with a mean absolute error of 0.9% and an absolute peak error of 0.46% for the von Mises stress distribution. This study shows the feasibility and potential of using DL techniques to bypass FEA for stress analysis applications.

Related Research