Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2023, Volume 17, Issue 10 doi: 10.1007/s11709-023-0985-7

A time−space porosity computational model for concrete under sulfate attack

Received: 2022-09-09 Accepted: 2023-12-26 Available online: 2023-12-26

Next Previous

Abstract

The deterioration of the microscopic pore structure of concrete under external sulfate attack (ESA) is a primary cause of degradation. Nevertheless, little effort has been invested in exploring the temporal and spatial development of the porosity of concrete under ESA. This study proposes a mechanical–chemical model to simulate the spatiotemporal distribution of the porosity. A relationship between the corrosion damage and amount of ettringite is proposed based on the theory of volume expansion. In addition, the expansion strain at the macro-scale is obtained using a stress analysis model of composite concentric sphere elements and the micromechanical mean-field approach. Finally, considering the influence of corrosion damage and cement hydration on the diffusion of sulfate ions, the expansion deformation and porosity space−time distribution are obtained using the finite difference method. The results demonstrate that the expansion strains calculated using the suggested model agree well with previously reported experimental results. Moreover, the tricalcium aluminate concentration, initial elastic modulus of cement paste, corrosion damage, and continuous hydration of cement significantly affect concrete under ESA. The proposed model can forecast and assess the porosity of concrete covers and provide a credible approach for determining the residual life of concrete structures under ESA.

Related Research