Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2017, Volume 11, Issue 6 doi: 10.1007/s11783-017-0939-1

Development and characterization of an anaerobic microcosm for reductive dechlorination of PCBs

. School of Space and Environment, Beihang University, Beijing 100083, China.. School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China

Available online: 2017-05-10

Next Previous

Abstract

The toxic and recalcitrant polychlorinated biphenyls (PCBs) adversely affect human and biota by bioaccumulation and biomagnification through food chain. In this study, an anaerobic microcosm was developed to extensively dechlorinate hexa- and hepta-CBs in Aroclor 1260. After 4 months of incubation in defined mineral salts medium amended PCBs (70 mmol·L ) and lactate (10 mmol·L ), the culture dechlorinated hexa-CBs from 40.2% to 8.7% and hepta-CBs 33.6% to 11.6%, with dechlorination efficiencies of 78.3% and 65.5%, respectively (all in moL ratio). This dechlorination process led to tetra-CBs (46.4%) as the predominant dechlorination products, followed by penta- (22.1%) and tri-CBs (5.4%). The number of chlorines per biphenyl decreased from 2.50 to 1.41. Results of quantitative real-time PCR show that cells increased from 2.39 × 10 ±0.5 × 10 to 4.99 × 10 ±0.32 × 10 copies mL after 120 days of incubation, suggesting that play a major role in reductive dechlorination of PCBs. This study could prove the feasibility of anaerobic reductive culture enrichment for the dehalogenation of highly chlorinated PCBs, which is prior to be applied for in situ bioremediation of notorious halogenated compounds.

Related Research