Effects of Vapor Pressure and Super-Hydrophobic Nanocomposite Coating on Microelectronics Reliability

Xuejun Fan, Liangbiao Chen, C. P. Wong, Hsing-Wei Chu, G. Q. Zhang

Engineering ›› 2015, Vol. 1 ›› Issue (3) : 384-390.

PDF(1651 KB)
PDF(1651 KB)
Engineering ›› 2015, Vol. 1 ›› Issue (3) : 384-390. DOI: 10.15302/J-ENG-2015034
Research
Research

Effects of Vapor Pressure and Super-Hydrophobic Nanocomposite Coating on Microelectronics Reliability

Author information +
History +

Abstract

Modeling vapor pressure is crucial for studying the moisture reliability of microelectronics, as high vapor pressure can cause device failures in environments with high temperature and humidity. To minimize the impact of vapor pressure, a super-hydrophobic (SH) coating can be applied on the exterior surface of devices in order to prevent moisture penetration. The underlying mechanism of SH coating for enhancing device reliability, however, is still not fully understood. In this paper, we present several existing theories for predicting vapor pressure within microelectronic materials. In addition, we discuss the mechanism and effectiveness of SH coating in preventing water vapor from entering a device, based on experimental results. Two theoretical models, a micro-mechanics-based whole-field vapor pressure model and a convection-diffusion model, are described for predicting vapor pressure. Both methods have been successfully used to explain experimental results on uncoated samples. However, when a device was coated with an SH nanocomposite, weight gain was still observed, likely due to vapor penetration through the SH surface. This phenomenon may cast doubt on the effectiveness of SH coatings in microelectronic devices. Based on current theories and the available experimental results, we conclude that it is necessary to develop a new theory to understand how water vapor penetrates through SH coatings and impacts the materials underneath. Such a theory could greatly improve microelectronics reliability.

Keywords

vapor pressure / moisture / semiconductor reliability / microelectromechanical systems (MEMS) / super-hydrophobic / nanocomposite coating

Cite this article

Download citation ▾
Xuejun Fan, Liangbiao Chen, C. P. Wong, Hsing-Wei Chu, G. Q. Zhang. Effects of Vapor Pressure and Super-Hydrophobic Nanocomposite Coating on Microelectronics Reliability. Engineering, 2015, 1(3): 384‒390 https://doi.org/10.15302/J-ENG-2015034

References

[1]
X. Q. Shi, Y. L. Zhang, W. Zhou, X. J. Fan. Effect of hygrothermal aging on interfacial reliability of silicon/underfill/FR-4 assembly. IEEE T. Compon. Pack. T., 2008, 31(1): 94–103
[2]
X. J. Fan, E. Suhir. Moisture Sensitivity of Plastic Packages of IC Devices. New York: Springer, 2010.
[3]
X. J. Fan, G. Q. Zhang, W. D. van Driel, L. J. Ernst. Interfacial delamination mechanisms during soldering reflow with moisture preconditioning. IEEE T. Compon. Pack. T., 2008, 31(2): 252–259
[4]
W. D. van Driel, M. A. J. van Gils, X. J. Fan, G. Q. Zhang, L. J. Ernst. Driving mechanisms of delamination related reliability problems in exposed pad packages. IEEE T. Compon. Pack. T., 2008, 31(2): 260–268
[5]
B. Xie, X. J. Fan, X. Q. Shi, H. Ding. Direct concentration approach of moisture diffusion and whole-field vapor pressure modeling for reflow process-Part I: Theory and numerical implementation. J. Electron. Packag., 2009, 131(3): 031010.1–031010.7
[6]
B. Xie, X. J. Fan, X. Q. Shi, H. Ding. Direct concentration approach of moisture diffusion and whole-field vapor pressure modeling for reflow process-Part II: Application to 3D ultrathin stacked-die chip scale packages. J. Electron. Packag., 2009, 131(3): 031011.1–031011.6
[7]
L. S. Zhu, J. Zhou, X. J. Fan. Rupture and instability of soft films due to moisture vaporization in microelectronic devices. Computers, Materials & Continua, 2014, 39(2): 113–134
[8]
Y. H. Xiu, L. B. Zhu, D. W. Hess, C. P. Wong. Superhydrophobic durable silica thin films from sol-gel processing for the application in antistiction of MEMS devices. Abstracts of Papers of the American Chemical Society, 2006: 231
[9]
Y. Liu, W. Lin, Z. Lin, Y. Xiu, C. P. Wong. A combined etching process toward robust superhydrophobic SiC surfaces. Nanotechnology, 2012, 23(25): 255703
[10]
Y. Liu, Z. Lin, W. Lin, K. S. Moon, C. P. Wong. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films. ACS Appl. Mater. Interfaces, 2012, 4(8): 3959–3964
[11]
Y. Liu, Z. Lin, K. S. Moon, C. P. Wong. Superhydrophobic nanocomposite coating for reliability improvement of microelectronics. IEEE Trans. Compon. Packag. Manuf. Tech., 2013, 3(7): 1079–1083
[12]
Y. H. Xiu, Y. Liu, B. Balu, D. W. Hess, C. P. Wong. Robust superhydrophobic surfaces prepared with epoxy resin and silica nanoparticles. IEEE Trans. Compon. Packag. Manuf. Tech., 2012, 2(3): 395–401
[13]
Y. Liu, Y. Xiu, D. W. Hess, C. P. Wong. Silicon surface structure-controlled oleophobicity. Langmuir, 2010, 26(11): 8908–8913
[14]
X. J. Feng, L. Jiang. Design and creation of superwetting/antiwetting surfaces. Adv. Mater., 2006, 18(23): 3063–3078
[15]
L. Gao, T. J. McCarthy. The “lotus effect” explained: Two reasons why two length scales of topography are important. Langmuir, 2006, 22(7): 2966–2967
[16]
X. J. Fan, S. W. R. Lee, Q. Han. Experimental investigations and model study of moisture behaviors in polymeric materials. Microelectron. Reliab., 2009, 49(8): 861–871
[17]
E. H. Wong, S. W. Koh, K. H. Lee, K.-M. Lim, T. B. Lim, Y.-W. Mai. Advances in vapor pressure modeling for electronic packaging. IEEE Trans. Adv. Packag., 2006, 29(4): 751–759
[18]
L. Chen, H. W. Chu, X. J. Fan. A convection-diffusion porous media model for moisture transport in polymer composites: Model development and validation. J. Polym. Sci. Pol. Phys., 2015, 53(20): 1440–1449
[19]
X. J. Fan, J. Zhou, G. Q. Zhang, L. J. Ernst. A micromechanics-based vapor pressure model in electronic packages. J. Electron. Packag., 2005, 127(3): 262–267
[20]
J. Adams, L. Chen, X. J. Fan. Vapor pressure prediction for stacked-chip packages in reflow by convection-diffusion model. In: Proceedings of the 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). Budapest, Hungary, 2015
[21]
Y. Wu, N. Katsube. A thermomechanical model for chemically decomposing composites—I. Theory. Int. J. Eng. Sci., 1997, 35(2): 113–128
[22]
R. M. Sullivan. The effect of water on thermal stresses in polymer composites. J. Appl. Mech., 1996, 63(1): 173–179
[23]
G. K. van der Wel, O. C. G. Adan. Moisture in organic coatings—A review. Prog. Org. Coat., 1999, 37(1−2): 1–14
[24]
H. B. Hopfenberg, H. L. Frisch. Transport of organic micromolecules in amorphous polymers. J. Polym. Sci., Part B. Polym. Lett., 1969, 7(6): 405–409
[25]
L. Chen, J. H. Lee, C. F. Chen. On the modeling of surface tension and its applications by the Generalized Interpolation Material Point Method. CMES-Comp. Model. Eng., 2012, 86(3): 199–224
[26]
L. Chen. Using the generalized interpolation material point method for fluid-solid interactions induced by surface tension (Doctoral desseration). Fairbanks, AK: University of Alaska Fairbanks, 2013
[27]
C. P. Wong. High-performance silicone gel as IC device chip protection-cure study and electrical reliability. Abstracts of Papers of the American Chemical Society, 1988: 102
[28]
R. G. Mancke. A moisture protection screening test for hybrid circuit encapsulants. IEEE Trans. Compon. Hybrids Manuf. Technol., 1981, 4(4): 492–498
[29]
J. L. Wu, R. T. Pike, C. P. Wong, N. P. Kim, M. H. Tanielian. Evaluation and characterization of reliable non-hermetic conformal coatings for microelectromechanical system (MEMS) device encapsulation. IEEE Trans. Adv. Packag., 2000, 23(4): 721–728
[30]
R. N. Wenzel. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 1936, 28(8): 988–994
[31]
A. B. D. Cassie, S. Baxter. Wettability of porous surfaces. Trans. Faraday Soc., 1944, 40: 546–551

Acknowledgement

The authors would like to acknowledge the support of the National High-Tech Research and Development Program of China (863 Program) (2015AA03A101).
Compliance with ethics guidelines
Xuejun Fan, Liangbiao Chen, C. P. Wong, Hsing-Wei Chu, and G. Q. Zhang declare that they have no conflict of interest or financial conflicts to disclose.
Funding
 
AI Summary AI Mindmap
PDF(1651 KB)

Accesses

Citations

Detail

Sections
Recommended

/