2015-09-30 , Volume 1 Issue 3

Cover illustration

  •  

    Brain-machine interfaces (BMIs) enable users to interact with their environment solely through the power of thought. A variety of tasks elicit specific signatures in brain activity that represent a user’s mental intent in terms of motor control, decision processing, attention, and more.Neural signals from relevant areas of the brain can be recorded during such tasks—either invasively, via microelectrodes or ECoG, or non-invasively, via EEG—and decoded to convey the user’s cognitive state. Through closed-loop visual feedback systems with external devices (e.g., robotic prosthetics), users are provided with a direct representation of their brain output and of the message being conveyed. As training progresses, users can learn to modulate or alter their brain state in order to communicate successfully with the outside world. See page 292.

    Download cover

  • Select all
    Views & Comments
  • Views & Comments
    Big Data for Precision Medicine
    [Author(id=1166050813253706602, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825389805691302, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050813404701548, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825389805691302, authorId=1166050813253706602, language=EN, stringName=Daniel Richard Leff, firstName=Daniel Richard, middleName=null, lastName=Leff, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= The Hamlyn Centre, South Kensington Campus, Imperial College London, London SW7 2AZ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050813522142061, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825389805691302, authorId=1166050813253706602, language=CN, stringName=Daniel Richard Leff, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= The Hamlyn Centre, South Kensington Campus, Imperial College London, London SW7 2AZ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050813635388271, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825389805691302, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050813782188913, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825389805691302, authorId=1166050813635388271, language=EN, stringName=Guang-Zhong Yang, firstName=Guang-Zhong, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= The Hamlyn Centre, South Kensington Campus, Imperial College London, London SW7 2AZ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050813899629426, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825389805691302, authorId=1166050813635388271, language=CN, stringName=Guang-Zhong Yang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= The Hamlyn Centre, South Kensington Campus, Imperial College London, London SW7 2AZ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Daniel Richard Leff , Guang-Zhong Yang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
    Precision Burn Trauma Medicine: Application for Molecular Engineering Science
    [Author(id=1166051183338120119, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825829586854738, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051183438783417, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825829586854738, authorId=1166051183338120119, language=EN, stringName=Kristen Jakubowski, firstName=Kristen, middleName=null, lastName=Jakubowski, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Departments of Surgery, Medicine, Organismal Biology, and Anatomy, Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051183510086586, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825829586854738, authorId=1166051183338120119, language=CN, stringName=Kristen Jakubowski, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Departments of Surgery, Medicine, Organismal Biology, and Anatomy, Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051183585584060, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825829586854738, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051183682053054, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825829586854738, authorId=1166051183585584060, language=EN, stringName=Michael Poellmann, firstName=Michael, middleName=null, lastName=Poellmann, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Departments of Surgery, Medicine, Organismal Biology, and Anatomy, Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051183757550527, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825829586854738, authorId=1166051183585584060, language=CN, stringName=Michael Poellmann, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Departments of Surgery, Medicine, Organismal Biology, and Anatomy, Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051183833048001, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825829586854738, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051183929516995, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825829586854738, authorId=1166051183833048001, language=EN, stringName=Raphael C. Lee, firstName=Raphael C., middleName=null, lastName=Lee, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Departments of Surgery, Medicine, Organismal Biology, and Anatomy, Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051184005014468, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825829586854738, authorId=1166051183833048001, language=CN, stringName=Raphael C. Lee, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Departments of Surgery, Medicine, Organismal Biology, and Anatomy, Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Kristen Jakubowski , Michael Poellmann , Raphael C. Lee

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
    Engineering for Human Security and Well-Being
    [Author(id=1166051099657560661, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825473091985932, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051099804361305, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825473091985932, authorId=1166051099657560661, language=EN, stringName=Hideaki Koizumi, firstName=Hideaki, middleName=null, lastName=Koizumi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Fellow and Corporate Officer, Hitachi, Ltd.; Vice President, Engineering Academy of Japan (EAJ), bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051099921801819, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825473091985932, authorId=1166051099657560661, language=CN, stringName=Hideaki Koizumi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Fellow and Corporate Officer, Hitachi, Ltd.; Vice President, Engineering Academy of Japan (EAJ), bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hideaki Koizumi

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Research
    Visual Prostheses: Technological and Socioeconomic Challenges
    [Author(id=1166051163729748860, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825822548812624, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051163880743806, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825822548812624, authorId=1166051163729748860, language=EN, stringName=John B. Troy, firstName=John B., middleName=null, lastName=Troy, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Biomedical Engineering Department, Northwestern University, Evanston, IL 60208-3107, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051163993990015, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825822548812624, authorId=1166051163729748860, language=CN, stringName=John B. Troy, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Biomedical Engineering Department, Northwestern University, Evanston, IL 60208-3107, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] John B. Troy

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Systems Neuroengineering: Understanding and Interacting with the Brain
    [Author(id=1166050911769518441, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050911870181738, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, authorId=1166050911769518441, language=EN, stringName=Bradley J. Edelman, firstName=Bradley J., middleName=null, lastName=Edelman, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1#, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050911979233643, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, authorId=1166050911769518441, language=CN, stringName=Bradley J. Edelman, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1#, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050912079896941, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050912180560238, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, authorId=1166050912079896941, language=EN, stringName=Nessa Johnson, firstName=Nessa, middleName=null, lastName=Johnson, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1#, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050912285417839, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, authorId=1166050912079896941, language=CN, stringName=Nessa Johnson, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1#, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050912390275441, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050912486744434, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, authorId=1166050912390275441, language=EN, stringName=Abbas Sohrabpour, firstName=Abbas, middleName=null, lastName=Sohrabpour, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1#, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050912583213427, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, authorId=1166050912390275441, language=CN, stringName=Abbas Sohrabpour, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1#, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050912683876725, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050912822288759, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, authorId=1166050912683876725, language=EN, stringName=Shanbao Tong, firstName=Shanbao, middleName=null, lastName=Tong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050912927146360, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, authorId=1166050912683876725, language=CN, stringName=童善保, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050913032003962, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050913203970429, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, authorId=1166050913032003962, language=EN, stringName=Nitish Thakor, firstName=Nitish, middleName=null, lastName=Thakor, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=3, 4, address=3  Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
    4  SINAPSE Institute, National University of Singapore 119077, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050913308828030, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, authorId=1166050913032003962, language=CN, stringName=Nitish Thakor, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=3, 4, address=3  Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
    4  SINAPSE Institute, National University of Singapore 119077, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050913426268544, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050913627595139, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, authorId=1166050913426268544, language=EN, stringName=Bin He, firstName=Bin, middleName=null, lastName=He, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 5, address=1  Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
    5  Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050913728258436, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448605639134, authorId=1166050913426268544, language=CN, stringName=Bin He, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 5, address=1  Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
    5  Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Bradley J. Edelman , Nessa Johnson , Abbas Sohrabpour , Shanbao Tong , Nitish Thakor , Bin He

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Optical Molecular Imaging Frontiers in Oncology: The Pursuit of Accuracy and Sensitivity
    [Author(id=1166050947513377596, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050947605652285, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050947513377596, language=EN, stringName=Kun Wang, firstName=Kun, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=#, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050947706315582, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050947513377596, language=CN, stringName=王坤, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=#, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050947798590272, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050947895059265, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050947798590272, language=EN, stringName=Chongwei Chi, firstName=Chongwei, middleName=null, lastName=Chi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=#, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050947987333954, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050947798590272, language=CN, stringName=迟崇巍, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=#, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050948083802948, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050948176077637, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050948083802948, language=EN, stringName=Zhenhua Hu, firstName=Zhenhua, middleName=null, lastName=Hu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=#, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050948264158023, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050948083802948, language=CN, stringName=胡振华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=#, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050948335461196, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050948436124496, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050948335461196, language=EN, stringName=Muhan Liu, firstName=Muhan, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050948507427667, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050948335461196, language=CN, stringName=刘沐寒, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050948582925144, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050948675199836, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050948582925144, language=EN, stringName=Hui Hui, firstName=Hui, middleName=null, lastName=Hui, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050948754891615, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050948582925144, language=CN, stringName=惠辉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050948826194787, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050948931052393, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050948826194787, language=EN, stringName=Wenting Shang, firstName=Wenting, middleName=null, lastName=Shang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050949002355564, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050948826194787, language=CN, stringName=尚文婷, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050949077853039, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050949174322033, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050949077853039, language=EN, stringName=Dong Peng, firstName=Dong, middleName=null, lastName=Peng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050949249819506, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050949077853039, language=CN, stringName=彭冬, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050949325316980, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050949421785974, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050949325316980, language=EN, stringName=Shuang Zhang, firstName=Shuang, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050949497283447, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050949325316980, language=CN, stringName=张爽, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050949564392313, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050949665055611, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050949564392313, language=EN, stringName=Jinzuo Ye, firstName=Jinzuo, middleName=null, lastName=Ye, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050949736358780, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050949564392313, language=CN, stringName=叶津佐, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050949811856254, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, orderNo=9, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050949912519552, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050949811856254, language=EN, stringName=Haixiao Liu, firstName=Haixiao, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050949988017025, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050949811856254, language=CN, stringName=刘海哮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050950059320195, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, orderNo=10, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050950159983493, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050950059320195, language=EN, stringName=Jie Tian, firstName=Jie, middleName=null, lastName=Tian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050950231286662, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825484202697243, authorId=1166050950059320195, language=CN, stringName=田捷, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Kun Wang , Chongwei Chi , Zhenhua Hu , Muhan Liu , Hui Hui , Wenting Shang , Dong Peng , Shuang Zhang , Jinzuo Ye , Haixiao Liu , Jie Tian

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Smartphone-Imaged HIV-1 Reverse-Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) on a Chip from Whole Blood
    [Author(id=1166050896909099230, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050897085260002, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, authorId=1166050896909099230, language=EN, stringName=Gregory L. Damhorst, firstName=Gregory L., middleName=null, lastName=Damhorst, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Department of Bioengineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
    2  Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050897181728995, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, authorId=1166050896909099230, language=CN, stringName=Gregory L. Damhorst, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Department of Bioengineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
    2  Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050897278197990, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050897441775850, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, authorId=1166050897278197990, language=EN, stringName=Carlos Duarte-Guevara, firstName=Carlos, middleName=null, lastName=Duarte-Guevara, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, 3, address=2  Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
    3  Department of Electrical and Computer Engineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050897534050539, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, authorId=1166050897278197990, language=CN, stringName=Carlos Duarte-Guevara, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, 3, address=2  Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
    3  Department of Electrical and Computer Engineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050897630519534, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050897789903091, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, authorId=1166050897630519534, language=EN, stringName=Weili Chen, firstName=Weili, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, 3, address=2  Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
    3  Department of Electrical and Computer Engineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050897882177781, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, authorId=1166050897630519534, language=CN, stringName=Weili Chen, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, 3, address=2  Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
    3  Department of Electrical and Computer Engineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050897974452470, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050898133836027, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, authorId=1166050897974452470, language=EN, stringName=Tanmay Ghonge, firstName=Tanmay, middleName=null, lastName=Ghonge, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Department of Bioengineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
    2  Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050898226110717, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, authorId=1166050897974452470, language=CN, stringName=Tanmay Ghonge, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Department of Bioengineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
    2  Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050898318385407, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050898507129093, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, authorId=1166050898318385407, language=EN, stringName=Brian T. Cunningham, firstName=Brian T., middleName=null, lastName=Cunningham, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, 3, address=1  Department of Bioengineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
    2  Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
    3  Department of Electrical and Computer Engineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050898607792391, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, authorId=1166050898318385407, language=CN, stringName=Brian T. Cunningham, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, 3, address=1  Department of Bioengineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
    2  Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
    3  Department of Electrical and Computer Engineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050898700067082, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050898901393680, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, authorId=1166050898700067082, language=EN, stringName=Rashid Bashir, firstName=Rashid, middleName=null, lastName=Bashir, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, 3, address=1  Department of Bioengineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
    2  Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
    3  Department of Electrical and Computer Engineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050899014639890, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825447888413146, authorId=1166050898700067082, language=CN, stringName=Rashid Bashir, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, 3, address=1  Department of Bioengineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
    2  Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
    3  Department of Electrical and Computer Engineering, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Gregory L. Damhorst , Carlos Duarte-Guevara , Weili Chen , Tanmay Ghonge , Brian T. Cunningham , Rashid Bashir

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    An Ultrasonic Backscatter Instrument for Cancellous Bone Evaluation in Neonates
    [Author(id=1166051096591524380, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051096742519326, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, authorId=1166051096591524380, language=EN, stringName=Chengcheng Liu, firstName=Chengcheng, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Electronic Engineering, Fudan University, Shanghai 200433, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051096855765535, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, authorId=1166051096591524380, language=CN, stringName=刘成成, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Electronic Engineering, Fudan University, Shanghai 200433, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051096973206050, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051097124200996, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, authorId=1166051096973206050, language=EN, stringName=Rong Zhang, firstName=Rong, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051097237447205, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, authorId=1166051096973206050, language=CN, stringName=张蓉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051097350693415, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051097501688361, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, authorId=1166051097350693415, language=EN, stringName=Ying Li, firstName=Ying, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Electronic Engineering, Fudan University, Shanghai 200433, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051097619128874, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, authorId=1166051097350693415, language=CN, stringName=李颖, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Electronic Engineering, Fudan University, Shanghai 200433, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051097732375084, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051097883370030, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, authorId=1166051097732375084, language=EN, stringName=Feng Xu, firstName=Feng, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Electronic Engineering, Fudan University, Shanghai 200433, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051098005004847, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, authorId=1166051097732375084, language=CN, stringName=徐峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Electronic Engineering, Fudan University, Shanghai 200433, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051098114056753, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051098302800440, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, authorId=1166051098114056753, language=EN, stringName=Dean Ta, firstName=Dean, middleName=null, lastName=Ta, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 3, address=1  Department of Electronic Engineering, Fudan University, Shanghai 200433, China
    3  Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051098411852347, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, authorId=1166051098114056753, language=CN, stringName=他得安, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 3, address=1  Department of Electronic Engineering, Fudan University, Shanghai 200433, China
    3  Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051098512515647, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051098646733380, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, authorId=1166051098512515647, language=EN, stringName=Weiqi Wang, firstName=Weiqi, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Electronic Engineering, Fudan University, Shanghai 200433, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051098743202373, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461637341688, authorId=1166051098512515647, language=CN, stringName=王威琪, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Electronic Engineering, Fudan University, Shanghai 200433, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Chengcheng Liu , Rong Zhang , Ying Li , Feng Xu , Dean Ta , Weiqi Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Characterizing Thermal Augmentation of Convection-Enhanced Drug Delivery with the Fiberoptic Microneedle Device
    [Author(id=1166051080212766991, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448127488475, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051080342790418, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448127488475, authorId=1166051080212766991, language=EN, stringName=R. Lyle Hood, firstName=R. Lyle, middleName=null, lastName=Hood, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051080439259413, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448127488475, authorId=1166051080212766991, language=CN, stringName=R. Lyle Hood, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051080539922713, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448127488475, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051080665751838, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448127488475, authorId=1166051080539922713, language=EN, stringName=Rudy T. Andriani, firstName=Rudy T., middleName=null, lastName=Andriani, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051080762220833, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448127488475, authorId=1166051080539922713, language=CN, stringName=Rudy T. Andriani, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051080858689829, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448127488475, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051080984518953, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448127488475, authorId=1166051080858689829, language=EN, stringName=Tobias E. Ecker, firstName=Tobias E., middleName=null, lastName=Ecker, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051081080987948, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448127488475, authorId=1166051080858689829, language=CN, stringName=Tobias E. Ecker, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051081177456943, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448127488475, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051081303286067, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448127488475, authorId=1166051081177456943, language=EN, stringName=John L. Robertson, firstName=John L., middleName=null, lastName=Robertson, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=3, address=3  School of Biomedical Engineering, Virginia Tech, Blacksburg, VA 24060, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051081395560758, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448127488475, authorId=1166051081177456943, language=CN, stringName=John L. Robertson, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=3, address=3  School of Biomedical Engineering, Virginia Tech, Blacksburg, VA 24060, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051081466863929, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448127488475, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051081563332924, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448127488475, authorId=1166051081466863929, language=EN, stringName=Christopher G. Rylander, firstName=Christopher G., middleName=null, lastName=Rylander, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=4, address=4  Department of Mechanical Engineering, University of Texas, Austin, TX 78712, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051081643024702, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825448127488475, authorId=1166051081466863929, language=CN, stringName=Christopher G. Rylander, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=4, address=4  Department of Mechanical Engineering, University of Texas, Austin, TX 78712, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] R. Lyle Hood , Rudy T. Andriani , Tobias E. Ecker , John L. Robertson , Christopher G. Rylander

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A Confocal Endoscope for Cellular Imaging
    [Author(id=1166051133425902382, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051133614646065, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, authorId=1166051133425902382, language=EN, stringName=Jiafu Wang, firstName=Jiafu, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
    2  MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051133732086578, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, authorId=1166051133425902382, language=CN, stringName=王家福, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
    2  MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051133849527092, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051134000522038, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, authorId=1166051133849527092, language=EN, stringName=Min Yang, firstName=Min, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=3, address=3  Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051134113768247, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, authorId=1166051133849527092, language=CN, stringName=杨敏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=3, address=3  Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051134222820153, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051134411563836, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, authorId=1166051134222820153, language=EN, stringName=Li Yang, firstName=Li, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
    2  MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051134529004349, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, authorId=1166051134222820153, language=CN, stringName=杨莉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
    2  MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051134642250559, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051134830994242, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, authorId=1166051134642250559, language=EN, stringName=Yun Zhang, firstName=Yun, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
    2  MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051134944240451, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, authorId=1166051134642250559, language=CN, stringName=张云, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
    2  MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051135061680965, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051135250424648, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, authorId=1166051135061680965, language=EN, stringName=Jing Yuan, firstName=Jing, middleName=null, lastName=Yuan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
    2  MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051135372059465, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, authorId=1166051135061680965, language=CN, stringName=袁菁, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
    2  MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051135481111371, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051135669855054, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, authorId=1166051135481111371, language=EN, stringName=Qian Liu, firstName=Qian, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
    2  MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051135783101263, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, authorId=1166051135481111371, language=CN, stringName=刘谦, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
    2  MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051135900541777, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051136047342419, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, authorId=1166051135900541777, language=EN, stringName=Xiaohua Hou, firstName=Xiaohua, middleName=null, lastName=Hou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=3, address=3  Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051136160588628, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, authorId=1166051135900541777, language=CN, stringName=侯晓华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=3, address=3  Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051136278029142, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051136470967129, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, authorId=1166051136278029142, language=EN, stringName=Ling Fu, firstName=Ling, middleName=null, lastName=Fu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
    2  MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051136580019034, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825502900904501, authorId=1166051136278029142, language=CN, stringName=付玲, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
    2  MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Jiafu Wang , Min Yang , Li Yang , Yun Zhang , Jing Yuan , Qian Liu , Xiaohua Hou , Ling Fu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Development of 8-inch Key Processes for Insulated-Gate Bipolar Transistor
    [Author(id=1166051267974979938, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825898507658178, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051268105003364, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825898507658178, authorId=1166051267974979938, language=EN, stringName=Guoyou Liu, firstName=Guoyou, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= CRRC Zhuzhou Electric Locomotive Institute Co., Ltd., Zhuzhou, Hunan 412000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051268209860965, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825898507658178, authorId=1166051267974979938, language=CN, stringName=刘国友, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= CRRC Zhuzhou Electric Locomotive Institute Co., Ltd., Zhuzhou, Hunan 412000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051268310524263, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825898507658178, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051268440547689, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825898507658178, authorId=1166051268310524263, language=EN, stringName=Rongjun Ding, firstName=Rongjun, middleName=null, lastName=Ding, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= CRRC Zhuzhou Electric Locomotive Institute Co., Ltd., Zhuzhou, Hunan 412000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051268545405290, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825898507658178, authorId=1166051268310524263, language=CN, stringName=丁荣军, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= CRRC Zhuzhou Electric Locomotive Institute Co., Ltd., Zhuzhou, Hunan 412000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051268646068588, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825898507658178, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051268776092014, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825898507658178, authorId=1166051268646068588, language=EN, stringName=Haihui Luo, firstName=Haihui, middleName=null, lastName=Luo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= CRRC Zhuzhou Electric Locomotive Institute Co., Ltd., Zhuzhou, Hunan 412000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051268880949615, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825898507658178, authorId=1166051268646068588, language=CN, stringName=罗海辉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= CRRC Zhuzhou Electric Locomotive Institute Co., Ltd., Zhuzhou, Hunan 412000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Guoyou Liu , Rongjun Ding , Haihui Luo

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    High-Throughput Multi-Plume Pulsed-Laser Deposition for Materials Exploration and Optimization
    [Author(id=1166051232067543204, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825871525700496, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051232176595113, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825871525700496, authorId=1166051232067543204, language=EN, stringName=Samuel S. Mao, firstName=Samuel S., middleName=null, lastName=Mao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051232256286892, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825871525700496, authorId=1166051232067543204, language=CN, stringName=Samuel S. Mao, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051232344367282, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825871525700496, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051232466002101, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825871525700496, authorId=1166051232344367282, language=EN, stringName=Xiaojun Zhang, firstName=Xiaojun, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051232562471097, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825871525700496, authorId=1166051232344367282, language=CN, stringName=Xiaojun Zhang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Samuel S. Mao , Xiaojun Zhang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Materials Design on the Origin of Gap States in a High-κ/GaAs Interface
    [Author(id=1166051232294035630, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051232415670452, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, authorId=1166051232294035630, language=EN, stringName=Weichao Wang, firstName=Weichao, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
    2  College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051232486973622, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, authorId=1166051232294035630, language=CN, stringName=Weichao Wang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
    2  College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051232562471096, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051232654745786, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, authorId=1166051232562471096, language=EN, stringName=Cheng Gong, firstName=Cheng, middleName=null, lastName=Gong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051232730243259, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, authorId=1166051232562471096, language=CN, stringName=Cheng Gong, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051232801546430, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051232902209729, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, authorId=1166051232801546430, language=EN, stringName=Ka Xiong, firstName=Ka, middleName=null, lastName=Xiong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051232969318595, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, authorId=1166051232801546430, language=CN, stringName=Ka Xiong, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051233044816070, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051233141285064, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, authorId=1166051233044816070, language=EN, stringName=Santosh K.C., firstName=Santosh, middleName=null, lastName=K.C., prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051233212588234, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, authorId=1166051233044816070, language=CN, stringName=Santosh K.C., firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051233288085707, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051233384554702, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, authorId=1166051233288085707, language=EN, stringName=Robert M. Wallace, firstName=Robert M., middleName=null, lastName=Wallace, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051233460052175, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, authorId=1166051233288085707, language=CN, stringName=Robert M. Wallace, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051233535549649, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051233636212947, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, authorId=1166051233535549649, language=EN, stringName=Kyeongjae Cho, firstName=Kyeongjae, middleName=null, lastName=Cho, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051233707516116, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825866517701515, authorId=1166051233535549649, language=CN, stringName=Kyeongjae Cho, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Weichao Wang , Cheng Gong , Ka Xiong , Santosh K.C. , Robert M. Wallace , Kyeongjae Cho

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Single-Seed Casting Large-Size Monocrystalline Silicon for High-Efficiency and Low-Cost Solar Cells
    [Author(id=1166051090342011330, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051090442674628, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, authorId=1166051090342011330, language=EN, stringName=Bing Gao, firstName=Bing, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051090518172101, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, authorId=1166051090342011330, language=CN, stringName=Bing Gao, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051090593669575, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051090690138571, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, authorId=1166051090593669575, language=EN, stringName=Satoshi Nakano, firstName=Satoshi, middleName=null, lastName=Nakano, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051090769830347, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, authorId=1166051090593669575, language=CN, stringName=Satoshi Nakano, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051090849522125, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051092724376028, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, authorId=1166051090849522125, language=EN, stringName=Hirofumi Harada, firstName=Hirofumi, middleName=null, lastName=Harada, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051092808262109, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, authorId=1166051090849522125, language=CN, stringName=Hirofumi Harada, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051092896342495, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051093001200097, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, authorId=1166051092896342495, language=EN, stringName=Yoshiji Miyamura, firstName=Yoshiji, middleName=null, lastName=Miyamura, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051093085086178, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, authorId=1166051092896342495, language=CN, stringName=Yoshiji Miyamura, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051093164777956, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051093273829862, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, authorId=1166051093164777956, language=EN, stringName=Takashi Sekiguchi, firstName=Takashi, middleName=null, lastName=Sekiguchi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051093345133031, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, authorId=1166051093164777956, language=CN, stringName=Takashi Sekiguchi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051093424824809, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051093521293803, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, authorId=1166051093424824809, language=EN, stringName=Koichi Kakimoto, firstName=Koichi, middleName=null, lastName=Kakimoto, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051093600985580, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825461251465719, authorId=1166051093424824809, language=CN, stringName=Koichi Kakimoto, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Bing Gao , Satoshi Nakano , Hirofumi Harada , Yoshiji Miyamura , Takashi Sekiguchi , Koichi Kakimoto

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Effects of Vapor Pressure and Super-Hydrophobic Nanocomposite Coating on Microelectronics Reliability
    [Author(id=1166050951175005088, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825512996594240, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050951330194341, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825512996594240, authorId=1166050951175005088, language=EN, stringName=Xuejun Fan, firstName=Xuejun, middleName=null, lastName=Fan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710, USA
    2  State Key Laboratory of Solid State Lighting, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050951426663334, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825512996594240, authorId=1166050951175005088, language=CN, stringName=樊学军, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710, USA
    2  State Key Laboratory of Solid State Lighting, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050951523132328, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825512996594240, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050951648961450, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825512996594240, authorId=1166050951523132328, language=EN, stringName=Liangbiao Chen, firstName=Liangbiao, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050951745430443, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825512996594240, authorId=1166050951523132328, language=CN, stringName=陈良彪, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050951837705133, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825512996594240, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050951963534255, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825512996594240, authorId=1166050951837705133, language=EN, stringName=C. P. Wong, firstName=C. P., middleName=null, lastName=Wong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=3, address=3  School of Materials Science and Engineering, Georgia Tech, Atlanta, GA 30332-0245, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050952060003248, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825512996594240, authorId=1166050951837705133, language=CN, stringName=汪正平, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=3, address=3  School of Materials Science and Engineering, Georgia Tech, Atlanta, GA 30332-0245, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050952156472242, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825512996594240, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050952286495668, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825512996594240, authorId=1166050952156472242, language=EN, stringName=Hsing-Wei Chu, firstName=Hsing-Wei, middleName=null, lastName=Chu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050952378770357, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825512996594240, authorId=1166050952156472242, language=CN, stringName=Hsing-Wei Chu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166050952479433655, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825512996594240, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166050952634622906, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825512996594240, authorId=1166050952479433655, language=EN, stringName=G. Q. Zhang, firstName=G. Q., middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=4, 5, address=4  Delft University of Technology, Delft 2600 AA, the Netherlands
    5  Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166050952726897595, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825512996594240, authorId=1166050952479433655, language=CN, stringName=张国旗, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=4, 5, address=4  Delft University of Technology, Delft 2600 AA, the Netherlands
    5  Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Xuejun Fan , Liangbiao Chen , C. P. Wong , Hsing-Wei Chu , G. Q. Zhang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A Precision-Positioning Method for a High-Acceleration Low-Load Mechanism Based on Optimal Spatial and Temporal Distribution of Inertial Energy
    [Author(id=1166051523932381566, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826009891594450, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051524062404992, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826009891594450, authorId=1166051523932381566, language=EN, stringName=Xin Chen, firstName=Xin, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= The Key Laboratory of Mechanical Equipment Manufacturing & Control Technology of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051524154679681, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826009891594450, authorId=1166051523932381566, language=CN, stringName=陈新, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= The Key Laboratory of Mechanical Equipment Manufacturing & Control Technology of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051524251148675, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826009891594450, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051524376977797, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826009891594450, authorId=1166051524251148675, language=EN, stringName=Youdun Bai, firstName=Youdun, middleName=null, lastName=Bai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= The Key Laboratory of Mechanical Equipment Manufacturing & Control Technology of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051524469252486, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826009891594450, authorId=1166051524251148675, language=CN, stringName=白有盾, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= The Key Laboratory of Mechanical Equipment Manufacturing & Control Technology of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051524565721480, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826009891594450, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051524687356298, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826009891594450, authorId=1166051524565721480, language=EN, stringName=Zhijun Yang, firstName=Zhijun, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= The Key Laboratory of Mechanical Equipment Manufacturing & Control Technology of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051524783825291, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826009891594450, authorId=1166051524565721480, language=CN, stringName=杨志军, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= The Key Laboratory of Mechanical Equipment Manufacturing & Control Technology of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051524876099981, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826009891594450, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051524997734799, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826009891594450, authorId=1166051524876099981, language=EN, stringName=Jian Gao, firstName=Jian, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= The Key Laboratory of Mechanical Equipment Manufacturing & Control Technology of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051525094203792, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826009891594450, authorId=1166051524876099981, language=CN, stringName=高健, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= The Key Laboratory of Mechanical Equipment Manufacturing & Control Technology of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051525186478482, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826009891594450, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051525316501908, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826009891594450, authorId=1166051525186478482, language=EN, stringName=Gongfa Chen, firstName=Gongfa, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= The Key Laboratory of Mechanical Equipment Manufacturing & Control Technology of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051525408776597, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826009891594450, authorId=1166051525186478482, language=CN, stringName=陈贡发, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= The Key Laboratory of Mechanical Equipment Manufacturing & Control Technology of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xin Chen , Youdun Bai , Zhijun Yang , Jian Gao , Gongfa Chen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.