2015-06-30 , Volume 1 Issue 2

Cover illustration

  •  

    The cover shows a conceptual model of a metamaterial planar-reflector satellite antenna. This planar-reflector antenna is designed using inhomogeneous electromagnetic metamaterials, artificial composite materials that reflect and converge the planar wave from a satellite to an antenna feed. A magnification view of part of the reflector shows the topology and distribution of the metamaterial unit cells. Further magnification shows the distribution of atoms. While it is difficult to manipulate atoms, it is relatively easy to arrange metamaterial unit cells. Although the picture shown here is conceptual, satellite antennas using metamaterial technology have already been produced and installed in over 22 cities across China, in the first use of this type of antenna anywhere in the world.

    Download cover

  • Select all
    News & Highlights
  • News & Highlights
    Future Technologies and Applications of III-Nitride Materials and Devices
    [Author(id=1166051735514046739, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826198937265049, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051735635681557, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826198937265049, authorId=1166051735514046739, language=EN, stringName=Shuji Nakamura, firstName=Shuji, middleName=null, lastName=Nakamura, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Materials Department of the College of Engineering, University of California, Santa Barbara (UCSB), Santa Barbara CA 93106-5050, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051735727956246, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826198937265049, authorId=1166051735514046739, language=CN, stringName=Shuji Nakamura, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Materials Department of the College of Engineering, University of California, Santa Barbara (UCSB), Santa Barbara CA 93106-5050, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Shuji Nakamura

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
    450 mm Silicon Wafers Are Imperative for Moore's Law but maybe Postponed
    [Author(id=1166051736336130333, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826196416488344, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051736470348063, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826196416488344, authorId=1166051736336130333, language=EN, stringName=Hailing Tu, firstName=Hailing, middleName=null, lastName=Tu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= General Research Institute for Nonferrous Metals, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051736575205664, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826196416488344, authorId=1166051736336130333, language=CN, stringName=屠海令, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= General Research Institute for Nonferrous Metals, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hailing Tu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
    Salinity Gradient Energy: Current State and New Trends
    [Author(id=1166051872185443082, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826496086926198, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051872323855116, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826496086926198, authorId=1166051872185443082, language=EN, stringName=Olivier Schaetzle, firstName=Olivier, middleName=null, lastName=Schaetzle, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Wetsus, European Center of Excellence for Sustainable Water Technology, Leeuwarden 8900 CC, the Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051872424518413, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826496086926198, authorId=1166051872185443082, language=CN, stringName=Olivier Schaetzle, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Wetsus, European Center of Excellence for Sustainable Water Technology, Leeuwarden 8900 CC, the Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051872525181711, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826496086926198, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051872697148178, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826496086926198, authorId=1166051872525181711, language=EN, stringName=Cees J. N. Buisman, firstName=Cees J. N., middleName=null, lastName=Buisman, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Wetsus, European Center of Excellence for Sustainable Water Technology, Leeuwarden 8900 CC, the Netherlands
    2  Sub-Department of Environmental Technology, Wagening University, Wageningen 6700 EV, the Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051872793617171, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826496086926198, authorId=1166051872525181711, language=CN, stringName=Cees J. N. Buisman, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Wetsus, European Center of Excellence for Sustainable Water Technology, Leeuwarden 8900 CC, the Netherlands
    2  Sub-Department of Environmental Technology, Wagening University, Wageningen 6700 EV, the Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Olivier Schaetzle , Cees J. N. Buisman

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • Views & Comments
    Development and Practical Applications of Blue Light-Emitting Diodes
    [Author(id=1166051577422340550, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826203743937442, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051577573335496, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826203743937442, authorId=1166051577422340550, language=EN, stringName=Hideaki Koizumi, firstName=Hideaki, middleName=null, lastName=Koizumi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Fellow and Corporate Officer, Hitachi, Ltd.; Vice President, Engineering Academy of Japan (EAJ), bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051577690776009, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826203743937442, authorId=1166051577422340550, language=CN, stringName=Hideaki Koizumi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Fellow and Corporate Officer, Hitachi, Ltd.; Vice President, Engineering Academy of Japan (EAJ), bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hideaki Koizumi

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
    The Materials Genome Initiative and Advanced Materials
    [Author(id=1166051841256645297, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826465464312631, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051841407640243, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826465464312631, authorId=1166051841256645297, language=EN, stringName=Liquan Chen, firstName=Liquan, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051841520886452, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826465464312631, authorId=1166051841256645297, language=CN, stringName=陈立泉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Liquan Chen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Research
    Progress in Understanding Color Maintenance in Solid-State Lighting Systems
    [Author(id=1166051980285239312, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826569810206735, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051980448817171, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826569810206735, authorId=1166051980285239312, language=EN, stringName=Maryam Yazdan Mehr, firstName=Maryam Yazdan, middleName=null, lastName=Mehr, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Delft University of Technology, Delft 2600 AA, the Netherlands
    2  Material Innovation Institute (M2i), Delft 2628 XG, the Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051980574646292, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826569810206735, authorId=1166051980285239312, language=CN, stringName=Maryam Yazdan Mehr, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Delft University of Technology, Delft 2600 AA, the Netherlands
    2  Material Innovation Institute (M2i), Delft 2628 XG, the Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051980675309590, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826569810206735, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051980809527320, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826569810206735, authorId=1166051980675309590, language=EN, stringName=Willem Dirk van Driel, firstName=Willem Dirk van, middleName=null, lastName=Driel, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Delft University of Technology, Delft 2600 AA, the Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051980910190617, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826569810206735, authorId=1166051980675309590, language=CN, stringName=Willem Dirk van Driel, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Delft University of Technology, Delft 2600 AA, the Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051981006659611, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826569810206735, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051981140877341, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826569810206735, authorId=1166051981006659611, language=EN, stringName=G. Q. (Kouchi) Zhang, firstName=G. Q. (Kouchi), middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Delft University of Technology, Delft 2600 AA, the Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051981241540638, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826569810206735, authorId=1166051981006659611, language=CN, stringName=张国旗, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Delft University of Technology, Delft 2600 AA, the Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Maryam Yazdan Mehr , Willem Dirk van Driel , G. Q. (Kouchi) Zhang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Metamaterials: Reshape and Rethink
    [Author(id=1166051769362080162, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826223889179592, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051769525658021, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826223889179592, authorId=1166051769362080162, language=EN, stringName=Ruopeng Liu, firstName=Ruopeng, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Kuang-Chi Institute of Advanced Technology, Shenzhen 518000, China
    2  State Key Laboratory of Metamaterial Electromagnetic Modulation Technology, Shenzhen 518000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051769626321318, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826223889179592, authorId=1166051769362080162, language=CN, stringName=刘若鹏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Kuang-Chi Institute of Advanced Technology, Shenzhen 518000, China
    2  State Key Laboratory of Metamaterial Electromagnetic Modulation Technology, Shenzhen 518000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051769726984616, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826223889179592, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051769890562475, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826223889179592, authorId=1166051769726984616, language=EN, stringName=Chunlin Ji, firstName=Chunlin, middleName=null, lastName=Ji, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Kuang-Chi Institute of Advanced Technology, Shenzhen 518000, China
    2  State Key Laboratory of Metamaterial Electromagnetic Modulation Technology, Shenzhen 518000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051769991225772, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826223889179592, authorId=1166051769726984616, language=CN, stringName=季春霖, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Kuang-Chi Institute of Advanced Technology, Shenzhen 518000, China
    2  State Key Laboratory of Metamaterial Electromagnetic Modulation Technology, Shenzhen 518000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051770091889070, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826223889179592, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051770259661238, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826223889179592, authorId=1166051770091889070, language=EN, stringName=Zhiya Zhao, firstName=Zhiya, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Kuang-Chi Institute of Advanced Technology, Shenzhen 518000, China
    2  State Key Laboratory of Metamaterial Electromagnetic Modulation Technology, Shenzhen 518000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051770356130232, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826223889179592, authorId=1166051770091889070, language=CN, stringName=赵治亚, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Kuang-Chi Institute of Advanced Technology, Shenzhen 518000, China
    2  State Key Laboratory of Metamaterial Electromagnetic Modulation Technology, Shenzhen 518000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051770460987834, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826223889179592, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051770591011260, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826223889179592, authorId=1166051770460987834, language=EN, stringName=Tian Zhou, firstName=Tian, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Kuang-Chi Institute of Advanced Technology, Shenzhen 518000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051770687480253, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826223889179592, authorId=1166051770460987834, language=CN, stringName=周添, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Kuang-Chi Institute of Advanced Technology, Shenzhen 518000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Ruopeng Liu , Chunlin Ji , Zhiya Zhao , Tian Zhou

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Bulk Glassy Alloys: Historical Development and Current Research
    [Author(id=1166051728580862205, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826191618204566, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051728719274240, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826191618204566, authorId=1166051728580862205, language=EN, stringName=Akihisa Inoue, firstName=Akihisa, middleName=null, lastName=Inoue, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Tohoku University, Sendai 980-8577, Japan
    2  International Institute of Green Materials, Josai International University, Togane 283-8555, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051728798966019, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826191618204566, authorId=1166051728580862205, language=CN, stringName=Akihisa Inoue, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  Tohoku University, Sendai 980-8577, Japan
    2  International Institute of Green Materials, Josai International University, Togane 283-8555, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Akihisa Inoue

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Recent Developments in Functional Crystals in China
    [Author(id=1166051469528064885, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825936365446124, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051469679059831, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825936365446124, authorId=1166051469528064885, language=EN, stringName=Jiyang Wang, firstName=Jiyang, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051469792306040, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825936365446124, authorId=1166051469528064885, language=CN, stringName=王继扬, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051469909746554, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825936365446124, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051470056547196, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825936365446124, authorId=1166051469909746554, language=EN, stringName=Haohai Yu, firstName=Haohai, middleName=null, lastName=Yu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051470173987709, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825936365446124, authorId=1166051469909746554, language=CN, stringName=于浩海, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051470287233919, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825936365446124, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051470442423169, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825936365446124, authorId=1166051470287233919, language=EN, stringName=Yicheng Wu, firstName=Yicheng, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051470551475074, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825936365446124, authorId=1166051470287233919, language=CN, stringName=吴以成, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051470664721284, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825936365446124, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051470815716230, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825936365446124, authorId=1166051470664721284, language=EN, stringName=Robert Boughton, firstName=Robert, middleName=null, lastName=Boughton, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=3, address=3  Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403-0001, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051470928962439, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825936365446124, authorId=1166051470664721284, language=CN, stringName=Robert Boughton, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=3, address=3  Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403-0001, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jiyang Wang , Haohai Yu , Yicheng Wu , Robert Boughton

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Research and Development of Heat-Resistant Materials for Advanced USC Power Plants with Steam Temperatures of 700 °C and Above
    [Author(id=1166051476780015634, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825942879200239, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051476910039062, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825942879200239, authorId=1166051476780015634, language=EN, stringName=Fujio Abe, firstName=Fujio, middleName=null, lastName=Abe, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Institute for Materials Science, Tsukuba 305-0047, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051477014896663, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825942879200239, authorId=1166051476780015634, language=CN, stringName=Fujio Abe, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Institute for Materials Science, Tsukuba 305-0047, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Fujio Abe

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Individualized Pixel Synthesis and Characterization of Combinatorial Materials Chips
    [Author(id=1166051689359925323, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826308203077909, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051689489948749, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826308203077909, authorId=1166051689359925323, language=EN, stringName=Xiao-Dong Xiang, firstName=Xiao-Dong, middleName=null, lastName=Xiang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051689594806350, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826308203077909, authorId=1166051689359925323, language=CN, stringName=项晓东, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051689695469648, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826308203077909, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051689829687378, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826308203077909, authorId=1166051689695469648, language=EN, stringName=Gang Wang, firstName=Gang, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  Intematix Corporation, Fremont, CA 94538, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051689942933587, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826308203077909, authorId=1166051689695469648, language=CN, stringName=王刚, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  Intematix Corporation, Fremont, CA 94538, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051690047791189, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826308203077909, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051690182008919, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826308203077909, authorId=1166051690047791189, language=EN, stringName=Xiaokun Zhang, firstName=Xiaokun, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051690286866520, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826308203077909, authorId=1166051690047791189, language=CN, stringName=张晓琨, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051690383335514, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826308203077909, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051690517553244, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826308203077909, authorId=1166051690383335514, language=EN, stringName=Yong Xiang, firstName=Yong, middleName=null, lastName=Xiang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=3, address=3  State Key Laboratory of Electronic Thin Films & Integrated Devices, School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051690618216541, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826308203077909, authorId=1166051690383335514, language=CN, stringName=向勇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=3, address=3  State Key Laboratory of Electronic Thin Films & Integrated Devices, School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051690718879839, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826308203077909, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051690853097569, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826308203077909, authorId=1166051690718879839, language=EN, stringName=Hong Wang, firstName=Hong, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051690953760866, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826308203077909, authorId=1166051690718879839, language=CN, stringName=汪洪, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xiao-Dong Xiang , Gang Wang , Xiaokun Zhang , Yong Xiang , Hong Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    High-Throughput Screening Using Fourier-Transform Infrared Imaging
    [Author(id=1166051618526520183, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826234442048491, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051618677515129, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826234442048491, authorId=1166051618526520183, language=EN, stringName=Erdem Sasmaz, firstName=Erdem, middleName=null, lastName=Sasmaz, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= SmartState Center for Strategic Approaches to the Generation of Electricity (SAGE), Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051618794955642, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826234442048491, authorId=1166051618526520183, language=CN, stringName=Erdem Sasmaz, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= SmartState Center for Strategic Approaches to the Generation of Electricity (SAGE), Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051618920784764, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826234442048491, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051619071779710, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826234442048491, authorId=1166051618920784764, language=EN, stringName=Kathleen Mingle, firstName=Kathleen, middleName=null, lastName=Mingle, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= SmartState Center for Strategic Approaches to the Generation of Electricity (SAGE), Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051619185025919, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826234442048491, authorId=1166051618920784764, language=CN, stringName=Kathleen Mingle, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= SmartState Center for Strategic Approaches to the Generation of Electricity (SAGE), Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051619298272129, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826234442048491, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051619449267075, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826234442048491, authorId=1166051619298272129, language=EN, stringName=Jochen Lauterbach, firstName=Jochen, middleName=null, lastName=Lauterbach, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= SmartState Center for Strategic Approaches to the Generation of Electricity (SAGE), Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051619558318980, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826234442048491, authorId=1166051619298272129, language=CN, stringName=Jochen Lauterbach, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= SmartState Center for Strategic Approaches to the Generation of Electricity (SAGE), Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Erdem Sasmaz , Kathleen Mingle , Jochen Lauterbach

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    First-Principles Study of Lithium and Sodium Atoms Intercalation in Fluorinated Graphite
    [Author(id=1166051605889082113, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826231027885005, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051606014911237, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826231027885005, authorId=1166051605889082113, language=EN, stringName=Fengya Rao, firstName=Fengya, middleName=null, lastName=Rao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Physics, Jiangxi Normal University, Nanchang 330022, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051606107185928, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826231027885005, authorId=1166051605889082113, language=CN, stringName=饶凤雅, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Physics, Jiangxi Normal University, Nanchang 330022, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051606203654925, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826231027885005, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051606325289746, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826231027885005, authorId=1166051606203654925, language=EN, stringName=Zhiqiang Wang, firstName=Zhiqiang, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Physics, Jiangxi Normal University, Nanchang 330022, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051606417564437, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826231027885005, authorId=1166051606203654925, language=CN, stringName=王志强, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Physics, Jiangxi Normal University, Nanchang 330022, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051606509839129, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826231027885005, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051606631473950, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826231027885005, authorId=1166051606509839129, language=EN, stringName=Bo Xu, firstName=Bo, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  Laboratory for Solid State Ionics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051606727942945, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826231027885005, authorId=1166051606509839129, language=CN, stringName=徐波, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  Laboratory for Solid State Ionics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051606820217637, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826231027885005, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051606941852456, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826231027885005, authorId=1166051606820217637, language=EN, stringName=Liquan Chen, firstName=Liquan, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  Laboratory for Solid State Ionics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051607038321450, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826231027885005, authorId=1166051606820217637, language=CN, stringName=陈立泉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2  Laboratory for Solid State Ionics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051607126401838, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826231027885005, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051607252230961, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826231027885005, authorId=1166051607126401838, language=EN, stringName=Chuying Ouyang, firstName=Chuying, middleName=null, lastName=Ouyang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Physics, Jiangxi Normal University, Nanchang 330022, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051607340311348, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826231027885005, authorId=1166051607126401838, language=CN, stringName=欧阳楚英, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, address=1  Department of Physics, Jiangxi Normal University, Nanchang 330022, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Fengya Rao , Zhiqiang Wang , Bo Xu , Liquan Chen , Chuying Ouyang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    CPS Modeling of CNC Machine Tool Work Processes Using an Instruction-Domain Based Approach
    [Author(id=1166051492152139909, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051492265386120, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, authorId=1166051492152139909, language=EN, stringName=Jihong Chen, firstName=Jihong, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051492345077897, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, authorId=1166051492152139909, language=CN, stringName=陈吉红, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051492433158283, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051492554793101, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, authorId=1166051492433158283, language=EN, stringName=Jianzhong Yang, firstName=Jianzhong, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051492638679182, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, authorId=1166051492433158283, language=CN, stringName=杨建中, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051492722565264, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051492856782994, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, authorId=1166051492722565264, language=EN, stringName=Huicheng Zhou, firstName=Huicheng, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051492957446292, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, authorId=1166051492722565264, language=CN, stringName=周会成, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051493037138070, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051493150384280, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, authorId=1166051493037138070, language=EN, stringName=Hua Xiang, firstName=Hua, middleName=null, lastName=Xiang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051493230076057, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, authorId=1166051493037138070, language=CN, stringName=向华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051493322350747, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051493431402653, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, authorId=1166051493322350747, language=EN, stringName=Zhihong Zhu, firstName=Zhihong, middleName=null, lastName=Zhu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051493515288735, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, authorId=1166051493322350747, language=CN, stringName=朱志红, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051493603369121, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051493712421027, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, authorId=1166051493603369121, language=EN, stringName=Yesong Li, firstName=Yesong, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051493796307108, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, authorId=1166051493603369121, language=CN, stringName=李叶松, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051493875998886, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051493989245096, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, authorId=1166051493875998886, language=EN, stringName=Chen-Han Lee, firstName=Chen-Han, middleName=null, lastName=Lee, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051494110879913, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, authorId=1166051493875998886, language=CN, stringName=李振瀚, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051494203154603, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051494316400813, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, authorId=1166051494203154603, language=EN, stringName=Guangda Xu, firstName=Guangda, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051494396092590, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159825951565602859, authorId=1166051494203154603, language=CN, stringName=许光达, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jihong Chen , Jianzhong Yang , Huicheng Zhou , Hua Xiang , Zhihong Zhu , Yesong Li , Chen-Han Lee , Guangda Xu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Design and 3D Printing of Scaffolds and Tissues
    [Author(id=1166051794880225897, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826249046614103, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051794993472107, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826249046614103, authorId=1166051794880225897, language=EN, stringName=Jia An, firstName=Jia, middleName=null, lastName=An, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051795077358188, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826249046614103, authorId=1166051794880225897, language=CN, stringName=安佳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051795161244270, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826249046614103, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051795270296176, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826249046614103, authorId=1166051795161244270, language=EN, stringName=Joanne Ee Mei Teoh, firstName=Joanne Ee Mei, middleName=null, lastName=Teoh, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051795349987953, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826249046614103, authorId=1166051795161244270, language=CN, stringName=Joanne Ee Mei Teoh, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051795433874035, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826249046614103, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051795542925941, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826249046614103, authorId=1166051795433874035, language=EN, stringName=Ratima Suntornnond, firstName=Ratima, middleName=null, lastName=Suntornnond, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051795626812022, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826249046614103, authorId=1166051795433874035, language=CN, stringName=Ratima Suntornnond, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051795710698104, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826249046614103, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051795819750010, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826249046614103, authorId=1166051795710698104, language=EN, stringName=Chee Kai Chua, firstName=Chee Kai, middleName=null, lastName=Chua, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051795903636091, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826249046614103, authorId=1166051795710698104, language=CN, stringName=Chee Kai Chua, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jia An , Joanne Ee Mei Teoh , Ratima Suntornnond , Chee Kai Chua

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids
    [Author(id=1166051604366549707, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051604555293395, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, authorId=1166051604366549707, language=EN, stringName=Kai Ling, firstName=Kai, middleName=null, lastName=Ling, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
    2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051604664345304, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, authorId=1166051604366549707, language=CN, stringName=凌楷, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
    2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051604777591516, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051604962140897, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, authorId=1166051604777591516, language=EN, stringName=Guoyou Huang, firstName=Guoyou, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, 3, address=2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
    3  The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051605066998499, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, authorId=1166051604777591516, language=CN, stringName=黄国友, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, 3, address=2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
    3  The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051605167661798, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051605297685225, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, authorId=1166051605167661798, language=EN, stringName=Juncong Liu, firstName=Juncong, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051605398348523, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, authorId=1166051605167661798, language=CN, stringName=刘俊聪, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051605499011822, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051605662589686, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, authorId=1166051605499011822, language=EN, stringName=Xiaohui Zhang, firstName=Xiaohui, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, 3, address=2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
    3  The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051605759058681, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, authorId=1166051605499011822, language=CN, stringName=张晓慧, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, 3, address=2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
    3  The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051605863916287, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051606027494150, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, authorId=1166051605863916287, language=EN, stringName=Yufei Ma, firstName=Yufei, middleName=null, lastName=Ma, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, 3, address=2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
    3  The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051606123963145, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, authorId=1166051605863916287, language=CN, stringName=马玉菲, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, 3, address=2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
    3  The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051606233015055, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051606400787220, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, authorId=1166051606233015055, language=EN, stringName=Tianjian Lu, firstName=Tianjian, middleName=null, lastName=Lu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
    2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051606497256216, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, authorId=1166051606233015055, language=CN, stringName=卢天健, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=1, 2, address=1  State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
    2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166051606593725212, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166051606757303074, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, authorId=1166051606593725212, language=EN, stringName=Feng Xu, firstName=Feng, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, 3, address=2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
    3  The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166051606862160678, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159826219636155335, authorId=1166051606593725212, language=CN, stringName=徐峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, 3, address=2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
    3  The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Kai Ling , Guoyou Huang , Juncong Liu , Xiaohui Zhang , Yufei Ma , Tianjian Lu , Feng Xu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.