
A Confocal Endoscope for Cellular Imaging
Jiafu Wang, Min Yang, Li Yang, Yun Zhang, Jing Yuan, Qian Liu, Xiaohua Hou, Ling Fu
Engineering ›› 2015, Vol. 1 ›› Issue (3) : 351-360.
A Confocal Endoscope for Cellular Imaging
Since its inception, endoscopy has aimed to establish an immediate diagnosis that is virtually consistent with a histologic diagnosis. In the past decade, confocal laser scanning microscopy has been brought into endoscopy, thus enabling in vivo microscopic tissue visualization with a magnification and resolution comparable to that obtained with the ex vivo microscopy of histological specimens. The major challenge in the development of instrumentation lies in the miniaturization of a fiber-optic probe for microscopic imaging with micron-scale resolution. Here, we present the design and construction of a confocal endoscope based on a fiber bundle with 1.4-μm lateral resolution and 8-frames per second (fps) imaging speed. The fiber-optic probe has a diameter of 2.6 mm that is compatible with the biopsy channel of a conventional endoscope. The prototype of a confocal endoscope has been used to observe epithelial cells of the gastrointestinal tracts of mice and will be further demonstrated in clinical trials. In addition, the confocal endoscope can be used for translational studies of epithelial function in order to monitor how molecules work and how cells interact in their natural environment.
cellular resolution / confocal endoscopy / optical biopsy
[1] |
B. Stewart, C. P. Wild. World Cancer Report 2014. Geneva: World Health Organization, 2014
|
[2] |
T. A. Stamey, N. Yang, A. R. Hay, J. E. McNeal, F. S. Freiha, E. Redwine. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med., 1987, 317(15): 909–916
|
[3] |
J. M. Edmonson. History of the instruments for gastrointestinal endoscopy. Gastrointest. Endosc., 1991, 37(Suppl. 2): S27–S56
|
[4] |
B. I. Hirschowitz, C. W. Peters, L. E. Curtiss. Preliminary report on a long fiberscope for examination of stomach and duodenum. Med. Bull. (Ann Arbor), 1957, 23(5): 178–180
|
[5] |
B. I. Hirschowitz. A personal history of the fiberscope. Gastroenterology, 1979, 76(4): 864–869
|
[6] |
J. Pohl,
|
[7] |
ASGE Technology Committee; L. M. Wong Kee Song,
|
[8] |
K. K. Wang, N. Okoro, G. Prasad, M. Wong Kee Song, N. S. Buttar, J. Tian. Endoscopic evaluation and advanced imaging of Barrett’s esophagus. Gastrointest. Endosc. Clin. N. Am., 2011, 21(1): 39–51
|
[9] |
R. Kiesslich,
|
[10] |
M. Goetz, N. P. Malek, R. Kiesslich. Microscopic imaging in endoscopy: Endomicroscopy and endocytoscopy. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(1): 11–18
|
[11] |
A. Meining,
|
[12] |
T. Liu, H. Zheng, W. Gong, C. Chen, B. Jiang. The accuracy of confocal laser endomicroscopy, narrow band imaging, and chromoendoscopy for the detection of atrophic gastritis. J. Clin. Gastroenterol., 2015, 49(5): 379–386
|
[13] |
M. Goetz. Endomicroscopy and targeted imaging of gastric neoplasia. Gastrointest. Endosc. Clin. N. Am., 2013, 23(3): 597–606
|
[14] |
L. Ginlünas, R. Juškaitis, S. V. Shatalin. Scanning fibre-optic microscope. Electron. Lett., 1991, 27(9): 724–726
|
[15] |
M. Gu, C. J. R. Sheppard, X. Gan. Image formation in a fiber-optical confocal scanning microscope. J. Opt. Soc. Am. A, 1991, 8(11): 1755–1761
|
[16] |
S. Kimura, T. Wilson. Confocal scanning optical microscope using single-mode fiber for signal detection. Appl. Opt., 1991, 30(16): 2143–2150
|
[17] |
A. F. Gmitro, D. Aziz. Confocal microscopy through a fiber-optic imaging bundle. Opt. Lett., 1993, 18(8): 565–567
|
[18] |
M. B. Wallace, P. Fockens. Probe-based confocal laser endomicroscopy. Gastroenterology, 2009, 136(5): 1509–1513
|
[19] |
R. Kiesslich, M. Goetz, M. Vieth, P. R. Galle, M. F. Neurath. Technology insight: Confocal laser endoscopy for in vivo diagnosis of colorectal cancer. Nat. Clin. Pract. Oncol., 2007, 4(8): 480–490
|
[20] |
M. Goetz, A. Watson, R. Kiesslich. Confocal laser endomicroscopy in gastrointestinal diseases. J. Biophotonics, 2011, 4(7−8): 498–508
|
[21] |
J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, T. Possner. Endoscope-compatible confocal microscope using a gradient index-lens system. Opt. Commun., 2001, 188(5−6): 267–273
|
[22] |
J. C. Jung, M. J. Schnitzer. Multiphoton endoscopy. Opt. Lett., 2003, 28(11): 902–904
|
[23] |
A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, A. F. Gmitro. Design and demonstration of a miniature catheter for a confocal microendoscope. Appl. Opt., 2004, 43(31): 5763–5771
|
[24] |
C. Liang, K. B. Sung, R. R. Richards-Kortum, M. R. Descour. Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope. Appl. Opt., 2002, 41(22): 4603–4610
|
[25] |
M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, M. R. Descour. Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy. Appl. Opt., 2006, 45(11): 2545–2554
|
[26] |
R. T. Kester, T. Christenson, R. R. Kortum, T. S. Tkaczyk. Low cost, high performance, self-aligning miniature optical systems. Appl. Opt., 2009, 48(18): 3375–3384
|
[27] |
M. Kyrish,
|
[28] |
W. Piyawattanametha,
|
[29] |
J. Sawinski, D. J. Wallace, D. S. Greenberg, S. Grossmann, W. Denk, J. N. Kerr. Visually evoked activity in cortical cells imaged in freely moving animals. Proc. Natl. Acad. Sci. U.S.A., 2009, 106(46): 19557–19562
|
[30] |
J. Sawinski, W. Denk. Miniature random-access fiber scanner for in vivo multiphoton imaging. J. Appl. Phys., 2007, 102(3): 034701
|
[31] |
Y. Zhang,
|
[32] |
C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, E. J. Seibel. Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging. J. Biophotonics, 2010, 3(5−6): 385–407
|
[33] |
B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, M. J. Schnitzer. Fiber-optic fluorescence imaging. Nat. Methods, 2005, 2(12): 941–950
|
[34] |
Z. Li, Z. Yang, L. Fu. Scanning properties of a resonant fiber-optic piezoelectric scanner. Rev. Sci. Instrum., 2011, 82(12): 123707
|
[35] |
Z. Li, L. Fu. Note: A resonant fiber-optic piezoelectric scanner achieves a raster pattern by combining two distinct resonances. Rev. Sci. Instrum., 2012, 83(8): 086102
|
[36] |
R. Sjöback, J. Nygren, M. Kubista. Absorption and fluorescence properties of fluorescein. Spectrochim. Acta A Mol. Biomol. Spectrosc., 1995, 51(6): L7–L21
|
[37] |
V. K. Sharma, P. D. Sahare, R. C. Rastogi, S. K. Ghoshal, D. Mohan. Excited state characteristics of acridine dyes: Acriflavine and acridine orange. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2003, 59(8): 1799–1804
|
[38] |
A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, P. M. Delaney. A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract. Gastrointest. Endosc., 2005, 62(5): 686–695
|
[39] |
J. M. Jabbour, M. A. Saldua, J. N. Bixler, K. C. Maitland. Confocal endomicroscopy: Instrumentation and medical applications. Ann. Biomed. Eng., 2012, 40(2): 378–397
|
[40] |
S. C. Park, M. K. Park, M. G. Kang. Super-resolution image reconstruction: A technical overview. IEEE Signal Proc. Mag., 2003, 20(3): 21–36
|
[41] |
S. Lertrattanapanich, N. K. Bose. High resolution image formation from low resolution frames using Delaunay triangulation. IEEE Trans. Image Process., 2002, 11(12): 1427–1441
|
[42] |
T. Kuiper,
|
[43] |
M. Goetz,
|
[44] |
D. Moussata,
|
[45] |
Y. Goto, H. Kiyono. Epithelial barrier: An interface for the cross-communication between gut flora and immune system. Immunol. Rev., 2012, 245(1): 147–163
|
[46] |
S. Foersch,
|
/
〈 |
|
〉 |