2020-03-31 , Volume 6 Issue 3

Cover illustration

  •  

    Download cover

  • Select all
    Editorial
  • Artificial Intelligence: Enabling Technology to Empower Society
    [Author(id=1166118554828464254, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912846354080670, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166118555948343432, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912846354080670, authorId=1166118554828464254, language=EN, stringName=Yue-Guang Lyu, firstName=Yue-Guang, middleName=null, lastName=Lyu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Information and Electronic Engineering, Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166118556049006729, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912846354080670, authorId=1166118554828464254, language=CN, stringName=吕跃广, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Information and Electronic Engineering, Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yue-Guang Lyu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • Transformational Technology Takes Center Stage: Global Grand Challenges Summit 2019, Day One
    [Author(id=1166118579851681985, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912941510255599, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166118579994288323, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912941510255599, authorId=1166118579851681985, language=EN, stringName=Sean O'Neill, firstName=Sean, middleName=null, lastName=O'Neill, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166118580103340228, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912941510255599, authorId=1166118579851681985, language=CN, stringName=Sean O'Neill, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Sean O'Neill

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Are Small Reactors Nuclear Power’s Next Big Thing?
    [Author(id=1166118174530920589, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912869410169768, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166118174669332624, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912869410169768, authorId=1166118174530920589, language=EN, stringName=Mitch Leslie, firstName=Mitch, middleName=null, lastName=Leslie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166118174778384530, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912869410169768, authorId=1166118174530920589, language=CN, stringName=Mitch Leslie, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Mitch Leslie

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Engineer Dinner—Save the Environment?
    [Author(id=1166118181547991281, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912895796536262, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166118181673820404, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912895796536262, authorId=1166118181547991281, language=EN, stringName=Chris Palmer, firstName=Chris, middleName=null, lastName=Palmer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166118181770289398, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912895796536262, authorId=1166118181547991281, language=CN, stringName=Chris Palmer, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Chris Palmer

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • Multiple Knowledge Representation of Artificial Intelligence
    [Author(id=1166118554404839541, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912858924409760, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166118554576806008, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912858924409760, authorId=1166118554404839541, language=EN, stringName=Yunhe Pan, firstName=Yunhe, middleName=null, lastName=Pan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Institute of Artificial Intelligence, Zhejiang University,Hangzhou 310027, China
    b Zhejiang Lab, Hangzhou 311121, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166118554681663610, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912858924409760, authorId=1166118554404839541, language=CN, stringName=潘云鹤, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Institute of Artificial Intelligence, Zhejiang University,Hangzhou 310027, China
    b Zhejiang Lab, Hangzhou 311121, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Yunhe Pan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • How to Interpret Machine Knowledge
    [Author(id=1166119402748961710, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166119402904150960, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, authorId=1166119402748961710, language=EN, stringName=Fashen Li, firstName=Fashen, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Department of Physics, Lanzhou University, Lanzhou 430000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119403021591473, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, authorId=1166119402748961710, language=CN, stringName=李发伸, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Department of Physics, Lanzhou University, Lanzhou 430000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119403134837684, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166119403281638326, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, authorId=1166119403134837684, language=EN, stringName=Lian Li, firstName=Lian, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b Department of Computer Science, HeFei University of Technology, Hefei 230009, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119403403273143, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, authorId=1166119403134837684, language=CN, stringName=李廉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b Department of Computer Science, HeFei University of Technology, Hefei 230009, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119403512325049, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166119403663319995, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, authorId=1166119403512325049, language=EN, stringName=Jianping Yin, firstName=Jianping, middleName=null, lastName=Yin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, *, address=c Department of Computer Science, Dongguan University of Technology, Dongguan 523808, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119403784954812, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, authorId=1166119403512325049, language=CN, stringName=殷建平, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, *, address=c Department of Computer Science, Dongguan University of Technology, Dongguan 523808, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119403898201023, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166119404045001668, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, authorId=1166119403898201023, language=EN, stringName=Yong Zhang, firstName=Yong, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, *, address=d Department of Physics, Xiamen University, Xiamen 361005, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119404158247878, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, authorId=1166119403898201023, language=CN, stringName=张勇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, *, address=d Department of Physics, Xiamen University, Xiamen 361005, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119404275688393, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166119404430877644, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, authorId=1166119404275688393, language=EN, stringName=Qingguo Zhou, firstName=Qingguo, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, *, address=e Department of Computer Science, Lanzhou University, Lanzhou 430000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119404556706765, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, authorId=1166119404275688393, language=CN, stringName=周庆国, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, *, address=e Department of Computer Science, Lanzhou University, Lanzhou 430000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119404669952975, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166119404829336529, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, authorId=1166119404669952975, language=EN, stringName=Kun Kuang, firstName=Kun, middleName=null, lastName=Kuang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=f, *, address=f College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119404938388434, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842117833625, authorId=1166119404669952975, language=CN, stringName=况琨
    , firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=f, *, address=f College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Fashen Li , Lian Li , Jianping Yin , Yong Zhang , Qingguo Zhou , Kun Kuang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • The General-Purpose Intelligent Agent
    [Author(id=1166119608450212746, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917619878879867, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166119608601207692, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917619878879867, authorId=1166119608450212746, language=EN, stringName=Cewu Lu, firstName=Cewu, middleName=null, lastName=Lu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119608710259597, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917619878879867, authorId=1166119608450212746, language=CN, stringName=卢策吾, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119608819311503, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917619878879867, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166119608970306449, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917619878879867, authorId=1166119608819311503, language=EN, stringName=Shiquan Wang, firstName=Shiquan, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b Flexiv Ltd., Shanghai 201105, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119609079358354, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917619878879867, authorId=1166119608819311503, language=CN, stringName=王世全, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b Flexiv Ltd., Shanghai 201105, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Cewu Lu , Shiquan Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Engineering Achievements
  • The Fuxing: The China Standard EMU
    [Author(id=1166119509317837152, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913227154940232, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119509456249186, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913227154940232, authorId=1166119509317837152, language=EN, stringName=Yanhui Qi, firstName=Yanhui, middleName=null, lastName=Qi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a China State Railway Group Co., Ltd., Beijing 100844, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119509561106787, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913227154940232, authorId=1166119509317837152, language=CN, stringName=齐延辉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a China State Railway Group Co., Ltd., Beijing 100844, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119509670158695, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913227154940232, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119509808570729, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913227154940232, authorId=1166119509670158695, language=EN, stringName=Li Zhou, firstName=Li, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China Academy of Railway Sciences Co., Ltd., Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119509913428330, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913227154940232, authorId=1166119509670158695, language=CN, stringName=周黎, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China Academy of Railway Sciences Co., Ltd., Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yanhui Qi , Li Zhou

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • High-Speed EMUs: Characteristics of Technological Development and Trends
    [Author(id=1166119497393430718, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913217491263803, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119497531842758, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913217491263803, authorId=1166119497393430718, language=EN, stringName=Hongwei Zhao, firstName=Hongwei, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a China Academy of Railway Sciences Co., Ltd., Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119497640894667, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913217491263803, authorId=1166119497393430718, language=CN, stringName=赵红卫, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a China Academy of Railway Sciences Co., Ltd., Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119497745752271, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913217491263803, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119497884164307, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913217491263803, authorId=1166119497745752271, language=EN, stringName=Jianying Liang, firstName=Jianying, middleName=null, lastName=Liang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b CRRC Qingdao Sifang Co., Ltd., Qingdao 266111, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119497989021909, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913217491263803, authorId=1166119497745752271, language=CN, stringName=梁建英, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b CRRC Qingdao Sifang Co., Ltd., Qingdao 266111, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119498098073817, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913217491263803, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119498236485853, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913217491263803, authorId=1166119498098073817, language=EN, stringName=Changqing Liu, firstName=Changqing, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c CRRC Changchun Railway Vehicles Co., Ltd., Changchun 130052, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119498341343455, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913217491263803, authorId=1166119498098073817, language=CN, stringName=刘长青, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c CRRC Changchun Railway Vehicles Co., Ltd., Changchun 130052, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hongwei Zhao , Jianying Liang , Changqing Liu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Topic Insights
  • The Next Breakthroughs of Artificial Intelligence: The Interdisciplinary Nature of AI
    [Author(id=1166118543692587025, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166118543818416147, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, authorId=1166118543692587025, language=EN, stringName=Yueting Zhuang, firstName=Yueting, middleName=null, lastName=Zhuang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166118543914885140, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, authorId=1166118543692587025, language=CN, stringName=庄越挺, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166118544007159830, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166118544137183256, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, authorId=1166118544007159830, language=EN, stringName=Ming Cai, firstName=Ming, middleName=null, lastName=Cai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166118544233652249, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, authorId=1166118544007159830, language=CN, stringName=蔡铭, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166118544325926939, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166118544455950366, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, authorId=1166118544325926939, language=EN, stringName=Xuelong Li, firstName=Xuelong, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166118544548225055, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, authorId=1166118544325926939, language=CN, stringName=李学龙, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166118544640499746, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166118544770523174, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, authorId=1166118544640499746, language=EN, stringName=Xiangang Luo, firstName=Xiangang, middleName=null, lastName=Luo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, *, address=c Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166118544862797865, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, authorId=1166118544640499746, language=CN, stringName=罗先刚, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, *, address=c Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166118544963461166, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166118545085095985, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, authorId=1166118544963461166, language=EN, stringName=Qiang Yang, firstName=Qiang, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, *, address=d Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166118545177370674, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, authorId=1166118544963461166, language=CN, stringName=杨强, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, *, address=d Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166118545273839669, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166118545399668794, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, authorId=1166118545273839669, language=EN, stringName=Fei Wu, firstName=Fei, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166118545496137791, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443163, authorId=1166118545273839669, language=CN, stringName=吴飞
    , firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Yueting Zhuang , Ming Cai , Xuelong Li , Xiangang Luo , Qiang Yang , Fei Wu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Review
    From Brain Science to Artificial Intelligence
    [Author(id=1166119593589793542, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917497816244788, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119593744982792, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917497816244788, authorId=1166119593589793542, language=EN, stringName=Jingtao Fan, firstName=Jingtao, middleName=null, lastName=Fan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Automation, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119593858229001, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917497816244788, authorId=1166119593589793542, language=CN, stringName=范静涛, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Automation, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119593971475211, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917497816244788, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119594122470157, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917497816244788, authorId=1166119593971475211, language=EN, stringName=Lu Fang, firstName=Lu, middleName=null, lastName=Fang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119594235716366, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917497816244788, authorId=1166119593971475211, language=CN, stringName=方璐, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119594348962576, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917497816244788, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119594499957522, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917497816244788, authorId=1166119594348962576, language=EN, stringName=Jiamin Wu, firstName=Jiamin, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Automation, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119594617398035, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917497816244788, authorId=1166119594348962576, language=CN, stringName=吴嘉敏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Automation, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119594726449941, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917497816244788, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119594877444887, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917497816244788, authorId=1166119594726449941, language=EN, stringName=Yuchen Guo, firstName=Yuchen, middleName=null, lastName=Guo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Automation, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119594990691096, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917497816244788, authorId=1166119594726449941, language=CN, stringName=郭雨晨, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Automation, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119595108131610, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917497816244788, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119595259126556, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917497816244788, authorId=1166119595108131610, language=EN, stringName=Qionghai Dai, firstName=Qionghai, middleName=null, lastName=Dai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Department of Automation, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119595372372765, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917497816244788, authorId=1166119595108131610, language=CN, stringName=戴琼海, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Department of Automation, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jingtao Fan , Lu Fang , Jiamin Wu , Yuchen Guo , Qionghai Dai

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Causal Inference
    [Author(id=1166120314997498355, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166120315140104693, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120314997498355, language=EN, stringName=Kun Kuang, firstName=Kun, middleName=null, lastName=Kuang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166120315253350902, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120314997498355, language=CN, stringName=况琨, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166120315362402808, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166120315509203450, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120315362402808, language=EN, stringName=Lian Li, firstName=Lian, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Computer Science and Technology, HeFei University of Technology, Hefei 230009, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166120315618255355, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120315362402808, language=CN, stringName=李廉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Computer Science and Technology, HeFei University of Technology, Hefei 230009, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166120315731501565, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166120315874107903, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120315731501565, language=EN, stringName=Zhi Geng, firstName=Zhi, middleName=null, lastName=Geng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c School of Mathematical Science, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166120315987354112, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120315731501565, language=CN, stringName=耿直, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c School of Mathematical Science, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166120316096406018, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166120316243206660, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120316096406018, language=EN, stringName=Lei Xu , Kun Zhang, firstName=Lei, middleName=null, lastName=Xu , Kun Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166120316352258565, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120316096406018, language=CN, stringName=徐雷, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166120316465504775, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166120316612305417, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120316465504775, language=EN, stringName=Beishui Liao, firstName=Beishui, middleName=null, lastName=Liao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA 15213, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166120316721357322, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120316465504775, language=CN, stringName=张坤, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA 15213, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166120316830409228, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166120316981404174, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120316830409228, language=EN, stringName=Huaxin Huang, firstName=Huaxin, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=f, address=f School of Humanities, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166120317086261775, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120316830409228, language=CN, stringName=廖备水, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=f, address=f School of Humanities, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166120317195313681, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166120317384057363, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120317195313681, language=EN, stringName=Peng Ding, firstName=Peng, middleName=null, lastName=Ding, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=f, address=f School of Humanities, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166120317497303572, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120317195313681, language=CN, stringName=黄华新, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=f, address=f School of Humanities, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166120317606355478, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166120317748961816, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120317606355478, language=EN, stringName=Wang Miao, firstName=Wang, middleName=null, lastName=Miao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=g, address=g University of California Berkeley, Berkeley, CA 94720, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166120317862208025, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120317606355478, language=CN, stringName=丁鹏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=g, address=g University of California Berkeley, Berkeley, CA 94720, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166120317971259931, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166120318113866269, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120317971259931, language=EN, stringName=Zhichao Jiang, firstName=Zhichao, middleName=null, lastName=Jiang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=h, address=h Guanghua School of Management, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166120318227112478, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120317971259931, language=CN, stringName=苗旺, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=h, address=h Guanghua School of Management, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166120318331970080, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, orderNo=9, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={CN=AuthorExt(id=1166120318478770722, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159920096607002675, authorId=1166120318331970080, language=CN, stringName=蒋智超, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=i, address=i Department of Government and Department of Statistics, Harvard University, Cambridge, MA 02138, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Kun Kuang , Lian Li , Zhi Geng , Lei Xu , Kun Zhang , Beishui Liao , Huaxin Huang , Peng Ding , Wang Miao , Zhichao Jiang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    A Survey of Accelerator Architectures for Deep Neural Networks
    [Author(id=1166121842995028784, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918399159591804, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121843364127539, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918399159591804, authorId=1166121842995028784, language=EN, stringName=Yiran Chen, firstName=Yiran, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121843477373749, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918399159591804, authorId=1166121842995028784, language=CN, stringName=陈怡然, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121843590619959, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918399159591804, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121843737420602, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918399159591804, authorId=1166121843590619959, language=EN, stringName=Yuan Xie, firstName=Yuan, middleName=null, lastName=Xie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106-9560, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121843829695292, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918399159591804, authorId=1166121843590619959, language=CN, stringName=谢源, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106-9560, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121843930358592, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918399159591804, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121844056187714, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918399159591804, authorId=1166121843930358592, language=EN, stringName=Linghao Song, firstName=Linghao, middleName=null, lastName=Song, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121844148462404, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918399159591804, authorId=1166121843930358592, language=CN, stringName=宋凌皓, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121844249125702, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918399159591804, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121844370760521, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918399159591804, authorId=1166121844249125702, language=EN, stringName=Fan Chen, firstName=Fan, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121844504978251, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918399159591804, authorId=1166121844249125702, language=CN, stringName=陈凡, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121844601447246, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918399159591804, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121844823745363, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918399159591804, authorId=1166121844601447246, language=EN, stringName=Tianqi Tang, firstName=Tianqi, middleName=null, lastName=Tang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106-9560, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121844920214357, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918399159591804, authorId=1166121844601447246, language=CN, stringName=唐天琪, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106-9560, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yiran Chen , Yuan Xie , Linghao Song , Fan Chen , Tianqi Tang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Progress in Neural NLP: Modeling, Learning, and Reasoning
    [Author(id=1166118108000871114, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914081949901385, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166118108139283148, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914081949901385, authorId=1166118108000871114, language=EN, stringName=Ming Zhou, Nan Duan, Shujie Liu, Heung-Yeung Shum, firstName=Ming Zhou, Nan Duan, Shujie Liu, Heung-Yeung, middleName=null, lastName=Shum, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Microsoft Research Asia, Beijing 100080, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166118108244140749, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914081949901385, authorId=1166118108000871114, language=CN, stringName=周明, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Microsoft Research Asia, Beijing 100080, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166118108348998351, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914081949901385, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={CN=AuthorExt(id=1166118108487410385, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914081949901385, authorId=1166118108348998351, language=CN, stringName=段楠, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Microsoft Research Asia, Beijing 100080, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166118108592267987, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914081949901385, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={CN=AuthorExt(id=1166118108726485717, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914081949901385, authorId=1166118108592267987, language=CN, stringName=刘树杰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Microsoft Research Asia, Beijing 100080, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166118108831343319, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914081949901385, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={CN=AuthorExt(id=1166118108965561049, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914081949901385, authorId=1166118108831343319, language=CN, stringName=沈向洋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Microsoft Research Asia, Beijing 100080, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ming Zhou, Nan Duan, Shujie Liu, Heung-Yeung Shum

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Artificial Intelligence in Healthcare: Review and Prediction Case Studies
    [Author(id=1166117914077225222, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913471712223806, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117914240803081, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913471712223806, authorId=1166117914077225222, language=EN, stringName=Guoguang Rong, firstName=Guoguang, middleName=null, lastName=Rong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Engineering, Westlake University, Hangzhou 310024, China
    b Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117914337272074, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913471712223806, authorId=1166117914077225222, language=CN, stringName=荣国光, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Engineering, Westlake University, Hangzhou 310024, China
    b Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117914433741068, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913471712223806, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117914563764494, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913471712223806, authorId=1166117914433741068, language=EN, stringName=Arnaldo Mendez, firstName=Arnaldo, middleName=null, lastName=Mendez, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Polystim Neurotech Laboratory, Polytechnique Montréal, Montréal H3T1J4, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117914660233487, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913471712223806, authorId=1166117914433741068, language=CN, stringName=Arnaldo Mendez, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Polystim Neurotech Laboratory, Polytechnique Montréal, Montréal H3T1J4, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117914760896785, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913471712223806, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117914886725907, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913471712223806, authorId=1166117914760896785, language=EN, stringName=Elie Bou Assi, firstName=Elie Bou, middleName=null, lastName=Assi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Polystim Neurotech Laboratory, Polytechnique Montréal, Montréal H3T1J4, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117914987389204, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913471712223806, authorId=1166117914760896785, language=CN, stringName=Elie Bou Assi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Polystim Neurotech Laboratory, Polytechnique Montréal, Montréal H3T1J4, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117915092246806, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913471712223806, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117915218075928, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913471712223806, authorId=1166117915092246806, language=EN, stringName=Bo Zhao, firstName=Bo, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Institute of VLSI Design, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117915314544921, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913471712223806, authorId=1166117915092246806, language=CN, stringName=赵博, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Institute of VLSI Design, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117915415208219, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913471712223806, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117915608146207, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913471712223806, authorId=1166117915415208219, language=EN, stringName=Mohamad Sawan, firstName=Mohamad, middleName=null, lastName=Sawan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a School of Engineering, Westlake University, Hangzhou 310024, China
    b Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
    c Polystim Neurotech Laboratory, Polytechnique Montréal, Montréal H3T1J4, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117915704615200, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913471712223806, authorId=1166117915415208219, language=CN, stringName=Mohamad Sawan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a School of Engineering, Westlake University, Hangzhou 310024, China
    b Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
    c Polystim Neurotech Laboratory, Polytechnique Montréal, Montréal H3T1J4, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Guoguang Rong , Arnaldo Mendez , Elie Bou Assi , Bo Zhao , Mohamad Sawan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Ethical Principles and Governance Technology Development of AI in China
    [Author(id=1166121711734284928, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917544754700874, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121711885279874, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917544754700874, authorId=1166121711734284928, language=EN, stringName=Wenjun Wu, firstName=Wenjun, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121711994331779, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917544754700874, authorId=1166121711734284928, language=CN, stringName=吴文峻, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121712107577989, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917544754700874, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121712254378631, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917544754700874, authorId=1166121712107577989, language=EN, stringName=Tiejun Huang, firstName=Tiejun, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121712363430536, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917544754700874, authorId=1166121712107577989, language=CN, stringName=黄铁军, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121712476676746, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917544754700874, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121712619283084, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917544754700874, authorId=1166121712476676746, language=EN, stringName=Ke Gong, firstName=Ke, middleName=null, lastName=Gong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Chinese Institute of New Generation Artificial Intelligence Development Strategie, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121712728334989, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917544754700874, authorId=1166121712476676746, language=CN, stringName=龚克, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Chinese Institute of New Generation Artificial Intelligence Development Strategie, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Wenjun Wu , Tiejun Huang , Ke Gong

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Feature Article
    Dark, Beyond Deep: A Paradigm Shift to Cognitive AI with Humanlike Common Sense
    [Author(id=1166122281241075738, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122281392070684, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122281241075738, language=EN, stringName=Yixin Zhu, firstName=Yixin, middleName=null, lastName=Zhu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122281505316893, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122281241075738, language=CN, stringName=朱毅鑫, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122281618563103, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122281765363745, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122281618563103, language=EN, stringName=Tao Gao, firstName=Tao, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122281882804258, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122281618563103, language=CN, stringName=高涛, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122281996050468, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122282142851110, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122281996050468, language=EN, stringName=Lifeng Fan, firstName=Lifeng, middleName=null, lastName=Fan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122282251903015, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122281996050468, language=CN, stringName=范丽凤, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122282369343529, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122282516144171, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122282369343529, language=EN, stringName=Siyuan Huang, firstName=Siyuan, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122282629390380, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122282369343529, language=CN, stringName=黄思远, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122282746830894, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122282893631536, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122282746830894, language=EN, stringName=Mark Edmonds, firstName=Mark, middleName=null, lastName=Edmonds, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122283002683441, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122282746830894, language=CN, stringName=Mark Edmonds, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122283115929651, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122283271118901, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122283115929651, language=EN, stringName=Hangxin Liu, firstName=Hangxin, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122283384365110, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122283115929651, language=CN, stringName=刘航欣, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122283493417016, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122283644411962, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122283493417016, language=EN, stringName=Feng Gao, firstName=Feng, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122283757658171, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122283493417016, language=CN, stringName=高枫, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122283870904381, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122284021899327, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122283870904381, language=EN, stringName=Chi Zhang, firstName=Chi, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122284139339840, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122283870904381, language=CN, stringName=张驰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122284248391746, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122284399386692, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122284248391746, language=EN, stringName=Siyuan Qi, firstName=Siyuan, middleName=null, lastName=Qi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122284512632901, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122284248391746, language=CN, stringName=Siyuan Qi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122284638462023, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, orderNo=9, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122284789456969, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122284638462023, language=EN, stringName=Ying Nian Wu, firstName=Ying Nian, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122284898508874, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122284638462023, language=CN, stringName=吴英年, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122285015949388, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, orderNo=10, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122285162750030, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122285015949388, language=EN, stringName=Joshua B. Tenenbaum, firstName=Joshua B., middleName=null, lastName=Tenenbaum, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122285275996239, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122285015949388, language=CN, stringName=Joshua B. Tenenbaum, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122285389242449, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, orderNo=11, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122285540237395, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122285389242449, language=EN, stringName=Song-Chun Zhu, firstName=Song-Chun, middleName=null, lastName=Zhu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122285653483604, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159919185583202616, authorId=1166122285389242449, language=CN, stringName=朱松纯, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yixin Zhu , Tao Gao , Lifeng Fan , Siyuan Huang , Mark Edmonds , Hangxin Liu , Feng Gao , Chi Zhang , Siyuan Qi , Ying Nian Wu , Joshua B. Tenenbaum , Song-Chun Zhu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Feature Article
    Adversarial Attacks and Defenses in Deep Learning
    [Author(id=1166119354271195860, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914954394493399, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119354447356631, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914954394493399, authorId=1166119354271195860, language=EN, stringName=Kui Ren, firstName=Kui, middleName=null, lastName=Ren, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Institute of Cyberspace Research, Zhejiang University, Hangzhou 310027, China
    b College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119354552214232, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914954394493399, authorId=1166119354271195860, language=CN, stringName=任奎, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Institute of Cyberspace Research, Zhejiang University, Hangzhou 310027, China
    b College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119354665460442, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914954394493399, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119354808066780, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914954394493399, authorId=1166119354665460442, language=EN, stringName=Tianhang Zheng, firstName=Tianhang, middleName=null, lastName=Zheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S 2E8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119354912924381, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914954394493399, authorId=1166119354665460442, language=CN, stringName=Tianhang Zheng, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S 2E8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119355021976287, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914954394493399, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119355198137058, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914954394493399, authorId=1166119355021976287, language=EN, stringName=Zhan Qin, firstName=Zhan, middleName=null, lastName=Qin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Institute of Cyberspace Research, Zhejiang University, Hangzhou 310027, China
    b College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119355302994659, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914954394493399, authorId=1166119355021976287, language=CN, stringName=秦湛, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Institute of Cyberspace Research, Zhejiang University, Hangzhou 310027, China
    b College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119355407852261, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914954394493399, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119355550458599, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914954394493399, authorId=1166119355407852261, language=EN, stringName=Xue Liu, firstName=Xue, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d School of Computer Science, McGill University, Montreal H3A 0E9, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119355659510504, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914954394493399, authorId=1166119355407852261, language=CN, stringName=Xue Liu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d School of Computer Science, McGill University, Montreal H3A 0E9, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Kui Ren , Tianhang Zheng , Zhan Qin , Xue Liu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    A Geometric Understanding of Deep Learning
    [Author(id=1166121480586191506, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166121480732992148, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, authorId=1166121480586191506, language=EN, stringName=Na Lei, firstName=Na, middleName=null, lastName=Lei, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a DUT-RU Co-Research Center of Advanced ICT for Active Life, Dalian University of Technology, Dalian 116620, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121480837849749, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, authorId=1166121480586191506, language=CN, stringName=雷娜, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a DUT-RU Co-Research Center of Advanced ICT for Active Life, Dalian University of Technology, Dalian 116620, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121480951095959, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166121481102090905, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, authorId=1166121480951095959, language=EN, stringName=Dongsheng An, firstName=Dongsheng, middleName=null, lastName=An, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b Department of Computer Science, Stony Brook University, Stony Brook, NY 11794-2424, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121481211142810, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, authorId=1166121480951095959, language=CN, stringName=安东生, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b Department of Computer Science, Stony Brook University, Stony Brook, NY 11794-2424, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121481320194716, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121481466995358, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, authorId=1166121481320194716, language=EN, stringName=Yang Guo, firstName=Yang, middleName=null, lastName=Guo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Computer Science, Stony Brook University, Stony Brook, NY 11794-2424, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121481576047263, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, authorId=1166121481320194716, language=CN, stringName=郭洋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Computer Science, Stony Brook University, Stony Brook, NY 11794-2424, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121481685099169, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121481827705507, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, authorId=1166121481685099169, language=EN, stringName=Kehua Su, firstName=Kehua, middleName=null, lastName=Su, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c School of Computer Science, Wuhan University, Wuhan 430072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121481940951716, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, authorId=1166121481685099169, language=CN, stringName=苏科华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c School of Computer Science, Wuhan University, Wuhan 430072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121482045809318, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121482188415656, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, authorId=1166121482045809318, language=EN, stringName=Shixia Liu, firstName=Shixia, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d School of Software, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121482301661865, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, authorId=1166121482045809318, language=CN, stringName=刘世霞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d School of Software, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121482410713771, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121482557514413, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, authorId=1166121482410713771, language=EN, stringName=Zhongxuan Luo, firstName=Zhongxuan, middleName=null, lastName=Luo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a DUT-RU Co-Research Center of Advanced ICT for Active Life, Dalian University of Technology, Dalian 116620, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121482666566318, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, authorId=1166121482410713771, language=CN, stringName=罗钟铉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a DUT-RU Co-Research Center of Advanced ICT for Active Life, Dalian University of Technology, Dalian 116620, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121482779812528, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121482960167603, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, authorId=1166121482779812528, language=EN, stringName=Shing-Tung Yau, firstName=Shing-Tung, middleName=null, lastName=Yau, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, d, address=e Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138, USA
    d School of Software, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121483069219508, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, authorId=1166121482779812528, language=CN, stringName=丘成桐, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, d, address=e Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138, USA
    d School of Software, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121483182465718, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121483396375226, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, authorId=1166121483182465718, language=EN, stringName=Xianfeng Gu, firstName=Xianfeng, middleName=null, lastName=Gu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, e, d, address=b Department of Computer Science, Stony Brook University, Stony Brook, NY 11794-2424, USA
    e Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138, USA
    d School of Software, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121483505427131, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159921972681433733, authorId=1166121483182465718, language=CN, stringName=顾险峰
    , firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, e, d, address=b Department of Computer Science, Stony Brook University, Stony Brook, NY 11794-2424, USA
    e Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138, USA
    d School of Software, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Na Lei , Dongsheng An , Yang Guo , Kehua Su , Shixia Liu , Zhongxuan Luo , Shing-Tung Yau , Xianfeng Gu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.