2020-02-27 , Volume 6 Issue 2

Cover illustration

  •  

    Rare earth permanent magnetic materials have been invented for more than 50 years, and have extensive applications in many fields of national economy. The cover image is a typical magnetic domain structure at thermal demagetized state, which is obtained by using magnetic force mocroscopy in the area of tens of micrometers on the surface of anisotropic Rare-earth-Fe-B sintered magnet at ambient condtion. The zebra-like strip pattern reflects the difference of magnetic field distribution between adjacent regions. The domain structure is the result of minimization of total energy in the surface layer of the magnet. Technically, both the magnetic domain structure and the crystalline microstructure are adjusted simutaneously by opitimizing the chamical composition and fabrication technology, for fabricating improved performance rare earth permanent magnetic materials.

    Download cover

  • Select all
    Editorial
  • Editorial for the Special Issue on Rare Earth Permanent Magnets
    [Author(id=1166119413167612903, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917496994161202, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119413310219241, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917496994161202, authorId=1166119413167612903, language=EN, stringName=Wei Li, firstName=Wei, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119413419271146, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917496994161202, authorId=1166119413167612903, language=CN, stringName=李卫, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Wei Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • Global Grand Challenges Summit 2019: Engineers Come Together to Tackle an Unpredictable World
    [Author(id=1166117776793461756, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912946547614707, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117776931873790, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912946547614707, authorId=1166117776793461756, language=EN, stringName=Sean O’Neill, firstName=Sean, middleName=null, lastName=O’Neill, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117777040925695, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912946547614707, authorId=1166117776793461756, language=CN, stringName=Sean O’Neill, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Sean O’Neill

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Solar Reaches for Grid Parity
    [Author(id=1166117744430211980, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443164, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117744543458190, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443164, authorId=1166117744430211980, language=EN, stringName=Jane Palmer, firstName=Jane, middleName=null, lastName=Palmer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117744627344271, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912842994443164, authorId=1166117744430211980, language=CN, stringName=Jane Palmer, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jane Palmer

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Airborne Wind Energy Prepares for Take Off
    [Author(id=1166117761899488195, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912887038829505, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117762033705925, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912887038829505, authorId=1166117761899488195, language=EN, stringName=Peter Weiss, firstName=Peter, middleName=null, lastName=Weiss, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117762138563526, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912887038829505, authorId=1166117761899488195, language=CN, stringName=Peter Weiss, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Peter Weiss

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • On the Future: A Keynote Address
    [Author(id=1166117477932524415, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912936909104106, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117478037382017, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912936909104106, authorId=1166117477932524415, language=EN, stringName=Martin John Rees, firstName=Martin John, middleName=null, lastName=Rees, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Medical Sciences; Fellow of the British Academy., bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117478117073794, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159912936909104106, authorId=1166117477932524415, language=CN, stringName=Martin John Rees, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Medical Sciences; Fellow of the British Academy., bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Martin John Rees

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Topic Insights
  • Rare Earth Permanent Magnets and Their Place in the Future Economy
    [Author(id=1166119563910898272, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917416824234533, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119564024144481, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917416824234533, authorId=1166119563910898272, language=EN, stringName=Allan Trench, firstName=Allan, middleName=null, lastName=Trench, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119564129002082, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917416824234533, authorId=1166119563910898272, language=CN, stringName=Allan Trench, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119564233859684, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917416824234533, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119564347105893, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917416824234533, authorId=1166119564233859684, language=EN, stringName=John P. Sykes, firstName=John P., middleName=null, lastName=Sykes, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, d, e, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119564451963494, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917416824234533, authorId=1166119564233859684, language=CN, stringName=John P. Sykes, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, d, e, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Allan Trench , John P. Sykes

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Review
    Perspective and Prospects for Rare Earth Permanent Magnets
    [Author(id=1166116634533486799, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159907503263769128, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116634709647570, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159907503263769128, authorId=1166116634533486799, language=EN, stringName=J.M.D. Coey, firstName=J.M.D., middleName=null, lastName=Coey, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Physics & Centre for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Dublin 2, Ireland
    b Department of Materials Science, Beihang University, Beijing 100191, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116634818699475, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159907503263769128, authorId=1166116634533486799, language=CN, stringName=J.M.D. Coey, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Physics & Centre for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Dublin 2, Ireland
    b Department of Materials Science, Beihang University, Beijing 100191, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    J.M.D. Coey

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Structural and Magnetic Properties of Nanocomposite Nd–Fe–B Prepared by Rapid Thermal Processing
    [Author(id=1166119518188790156, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119518411088272, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119518188790156, language=EN, stringName=Jinbo Yang, firstName=Jinbo, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119518520140177, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119518188790156, language=CN, stringName=杨金波, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119518629192083, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119518847295895, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119518629192083, language=EN, stringName=Jingzhi Han, firstName=Jingzhi, middleName=null, lastName=Han, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119518960542104, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119518629192083, language=CN, stringName=韩景智, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119519073788314, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119519291892126, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119519073788314, language=EN, stringName=Haidong Tian, firstName=Haidong, middleName=null, lastName=Tian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119519405138335, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119519073788314, language=CN, stringName=田海东, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119519514190241, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119519732294053, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119519514190241, language=EN, stringName=Liang Zha, firstName=Liang, middleName=null, lastName=Zha, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119519841345958, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119519514190241, language=CN, stringName=查亮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119519954592168, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119520176890284, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119519954592168, language=EN, stringName=Xiongzuo Zhang, firstName=Xiongzuo, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119520290136493, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119519954592168, language=CN, stringName=张雄祚, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119520407577007, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119520625680819, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119520407577007, language=EN, stringName=Chol Song Kim, firstName=Chol Song, middleName=null, lastName=Kim, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119520734732724, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119520407577007, language=CN, stringName=金哲星, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119520847978934, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119521061888442, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119520847978934, language=EN, stringName=Dong Liang, firstName=Dong, middleName=null, lastName=Liang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119521175134651, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119520847978934, language=CN, stringName=梁栋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119521288380861, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119521510678977, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119521288380861, language=EN, stringName=Wenyun Yang, firstName=Wenyun, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119521623925186, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119521288380861, language=CN, stringName=杨文云, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119521737171396, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119521955275208, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119521737171396, language=EN, stringName=Shunquan Liu, firstName=Shunquan, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119522068521417, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119521737171396, language=CN, stringName=刘顺荃, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166119522177573323, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, orderNo=9, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166119522395677135, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119522177573323, language=EN, stringName=Changsheng Wang, firstName=Changsheng, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166119522508923344, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913226735509831, authorId=1166119522177573323, language=CN, stringName=王常生, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
    c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Jinbo Yang , Jingzhi Han , Haidong Tian , Liang Zha , Xiongzuo Zhang , Chol Song Kim , Dong Liang , Wenyun Yang , Shunquan Liu , Changsheng Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    ThMn12-Type Alloys for Permanent Magnets
    [Author(id=1166116129476371216, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116129598006034, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, authorId=1166116129476371216, language=EN, stringName=G.C. Hadjipanayis, firstName=G.C., middleName=null, lastName=Hadjipanayis, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116129690280723, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, authorId=1166116129476371216, language=CN, stringName=G.C. Hadjipanayis, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116129778361109, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116129899995927, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, authorId=1166116129778361109, language=EN, stringName=A.M. Gabay, firstName=A.M., middleName=null, lastName=Gabay, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116129992270616, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, authorId=1166116129778361109, language=CN, stringName=A.M. Gabay, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116130084545306, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116130235540253, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, authorId=1166116130084545306, language=EN, stringName=A.M. Schönhöbel, firstName=A.M., middleName=null, lastName=Schönhöbel, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
    b BCMaterials, UPV/EHU Science Park, Leioa 48940, Spain, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116130319426334, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, authorId=1166116130084545306, language=CN, stringName=A.M. Schönhöbel, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
    b BCMaterials, UPV/EHU Science Park, Leioa 48940, Spain, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116130411701024, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116130533335842, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, authorId=1166116130411701024, language=EN, stringName=A. Martín-Cid, firstName=A., middleName=null, lastName=Martín-Cid, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b BCMaterials, UPV/EHU Science Park, Leioa 48940, Spain, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116130621416227, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, authorId=1166116130411701024, language=CN, stringName=A. Martín-Cid, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b BCMaterials, UPV/EHU Science Park, Leioa 48940, Spain, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116130713690917, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116130831131431, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, authorId=1166116130713690917, language=EN, stringName=J.M. Barandiaran, firstName=J.M., middleName=null, lastName=Barandiaran, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b BCMaterials, UPV/EHU Science Park, Leioa 48940, Spain, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116130923406120, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, authorId=1166116130713690917, language=CN, stringName=J.M. Barandiaran, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b BCMaterials, UPV/EHU Science Park, Leioa 48940, Spain, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116131011486506, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116131133121324, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, authorId=1166116131011486506, language=EN, stringName=D. Niarchos, firstName=D., middleName=null, lastName=Niarchos, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c NCSR Demokritos, Agia Paraskevi 15341, Greece, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116131225396013, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906664348443214, authorId=1166116131011486506, language=CN, stringName=D. Niarchos, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c NCSR Demokritos, Agia Paraskevi 15341, Greece, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    G.C. Hadjipanayis , A.M. Gabay , A.M. Schönhöbel , A. Martín-Cid , J.M. Barandiaran , D. Niarchos

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Computational Design of Rare-Earth Reduced Permanent Magnets
    [Author(id=1166117579807973875, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117579925414389, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117579807973875, language=EN, stringName=Alexander Kovacs, firstName=Alexander, middleName=null, lastName=Kovacs, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt 2700, Austria, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117580009300471, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117579807973875, language=CN, stringName=Alexander Kovacs, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt 2700, Austria, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117580097380858, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117580206432765, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117580097380858, language=EN, stringName=Johann Fischbacher, firstName=Johann, middleName=null, lastName=Fischbacher, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt 2700, Austria, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117580298707455, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117580097380858, language=CN, stringName=Johann Fischbacher, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt 2700, Austria, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117580411953666, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117580554560006, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117580411953666, language=EN, stringName=Markus Gusenbauer, firstName=Markus, middleName=null, lastName=Gusenbauer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt 2700, Austria, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117580659417608, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117580411953666, language=CN, stringName=Markus Gusenbauer, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt 2700, Austria, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117580776858123, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117580919464462, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117580776858123, language=EN, stringName=Harald Oezelt, firstName=Harald, middleName=null, lastName=Oezelt, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt 2700, Austria, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117581028516368, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117580776858123, language=CN, stringName=Harald Oezelt, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt 2700, Austria, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117581137568275, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117581280174615, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117581137568275, language=EN, stringName=Heike C. Herper, firstName=Heike, middleName=null, lastName=C. Herper, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117581389226521, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117581137568275, language=CN, stringName=Heike C. Herper, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117581502472732, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117581640884767, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117581502472732, language=EN, stringName=Olga Yu. Vekilova, firstName=Olga, middleName=null, lastName=Yu. Vekilova, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117581749936673, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117581502472732, language=CN, stringName=Olga Yu. Vekilova, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117581854794276, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117582030955049, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117581854794276, language=EN, stringName=Pablo Nieves, firstName=Pablo, middleName=null, lastName=Nieves, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c International Research Centre in Critical Raw Materials for Advanced Industrial Technologies, University of Burgos, Burgos 09001, Spain
    d IT4Innovations, VŠB-Technical University of Ostrava, Ostrava-Poruba 70833, Czech Republic, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117582144201259, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117581854794276, language=CN, stringName=Pablo Nieves, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c International Research Centre in Critical Raw Materials for Advanced Industrial Technologies, University of Burgos, Burgos 09001, Spain
    d IT4Innovations, VŠB-Technical University of Ostrava, Ostrava-Poruba 70833, Czech Republic, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117582249058862, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117582425219634, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117582249058862, language=EN, stringName=Sergiu Arapan, firstName=Sergiu, middleName=null, lastName=Arapan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c International Research Centre in Critical Raw Materials for Advanced Industrial Technologies, University of Burgos, Burgos 09001, Spain
    d IT4Innovations, VŠB-Technical University of Ostrava, Ostrava-Poruba 70833, Czech Republic, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117582538465844, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117582249058862, language=CN, stringName=Sergiu Arapan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c International Research Centre in Critical Raw Materials for Advanced Industrial Technologies, University of Burgos, Burgos 09001, Spain
    d IT4Innovations, VŠB-Technical University of Ostrava, Ostrava-Poruba 70833, Czech Republic, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117582651712055, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117582794318394, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117582651712055, language=EN, stringName=Thomas Schrefl, firstName=Thomas, middleName=null, lastName=Schrefl, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt 2700, Austria, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117582899175996, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913431404962350, authorId=1166117582651712055, language=CN, stringName=Thomas Schrefl, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt 2700, Austria, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Alexander Kovacs , Johann Fischbacher , Markus Gusenbauer , Harald Oezelt , Heike C. Herper , Olga Yu. Vekilova , Pablo Nieves , Sergiu Arapan , Thomas Schrefl

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Neutron Diffraction Investigation of the DyFe11Ti Magnetic Structure and Its Spin Reorientations
    [Author(id=1166116901966504898, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159907031350043004, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116902113305540, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159907031350043004, authorId=1166116901966504898, language=EN, stringName=Olivier Isnard, firstName=Olivier, middleName=null, lastName=Isnard, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a University Grenoble Alpes, Institut Néel du CNRS, 25 rue des Martyrs, Grenoble 38042, France, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116902222357445, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159907031350043004, authorId=1166116901966504898, language=CN, stringName=Olivier Isnard, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a University Grenoble Alpes, Institut Néel du CNRS, 25 rue des Martyrs, Grenoble 38042, France, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116902335603655, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159907031350043004, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116902482404297, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159907031350043004, authorId=1166116902335603655, language=EN, stringName=Eder J. Kinast, firstName=Eder, middleName=null, lastName=J. Kinast, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Universidade Estadual do Rio Grande do Sul, Porto Alegre, RS 90010-191, Brasil, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116902587261898, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159907031350043004, authorId=1166116902335603655, language=CN, stringName=Eder J. Kinast, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Universidade Estadual do Rio Grande do Sul, Porto Alegre, RS 90010-191, Brasil, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Olivier Isnard , Eder J. Kinast

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Tunable In-Plane Anisotropy in Amorphous Sm–Co Films Grown on (011)- Oriented Single-Crystal Substrates
    [Author(id=1166116866533024495, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116866717573874, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116866533024495, language=EN, stringName=Wenhui Liang, firstName=Wenhui, middleName=null, lastName=Liang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese
    b School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116866826625779, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116866533024495, language=CN, stringName=梁文会, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese
    b School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116866935677685, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116867116032760, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116866935677685, language=EN, stringName=Houbo Zhou, firstName=Houbo, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese
    b School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116867225084665, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116866935677685, language=CN, stringName=周厚博, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese
    b School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116867334136571, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116867510297342, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116867334136571, language=EN, stringName=Jiefu Xiong, firstName=Jiefu, middleName=null, lastName=Xiong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese
    b School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116867623543551, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116867334136571, language=CN, stringName=熊杰夫, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese
    b School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116867732595457, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116867950699269, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116867732595457, language=EN, stringName=Fengxia Hu, firstName=Fengxia, middleName=null, lastName=Hu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese
    b School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
    c Songshan Lake Materials Laboratory, Dongguan 523808, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116868063945478, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116867732595457, language=CN, stringName=胡凤霞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese
    b School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
    c Songshan Lake Materials Laboratory, Dongguan 523808, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116868168803080, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116868353352459, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116868168803080, language=EN, stringName=Jia Li, firstName=Jia, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese
    b School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116868462404364, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116868168803080, language=CN, stringName=李佳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese
    b School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116868571456270, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116868718256912, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116868571456270, language=EN, stringName=Jian Zhang, firstName=Jian, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116868823114513, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116868571456270, language=CN, stringName=张健, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116868936360723, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116869154464535, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116868936360723, language=EN, stringName=Jing Wang, firstName=Jing, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, e, address=a Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese
    b School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
    e Fujian Institute of Innovation, Chinese Academy of Sciences, Fuzhou 350108, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116869263516440, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116868936360723, language=CN, stringName=王晶, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, e, address=a Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese
    b School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
    e Fujian Institute of Innovation, Chinese Academy of Sciences, Fuzhou 350108, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116869368374042, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116869586477854, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116869368374042, language=EN, stringName=Jirong Sun, firstName=Jirong, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese
    b School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
    c Songshan Lake Materials Laboratory, Dongguan 523808, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116869695529759, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116869368374042, language=CN, stringName=孙继荣, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese
    b School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
    c Songshan Lake Materials Laboratory, Dongguan 523808, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116869808775969, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116870026879781, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116869808775969, language=EN, stringName=Baogen Shen, firstName=Baogen, middleName=null, lastName=Shen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese
    b School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
    c Songshan Lake Materials Laboratory, Dongguan 523808, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116870135931686, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906850554569569, authorId=1166116869808775969, language=CN, stringName=沈保根, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese
    b School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
    c Songshan Lake Materials Laboratory, Dongguan 523808, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Wenhui Liang , Houbo Zhou , Jiefu Xiong , Fengxia Hu , Jia Li , Jian Zhang , Jing Wang , Jirong Sun , Baogen Shen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    An Efficient Process for Recycling Nd–Fe–B Sludge as High-Performance Sintered Magnets
    [Author(id=1166117564045779152, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117564175802582, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117564045779152, language=EN, stringName=Xiaowen Yin, firstName=Xiaowen, middleName=null, lastName=Yin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117564272271578, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117564045779152, language=CN, stringName=尹小文, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117564372934879, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117564553289960, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117564372934879, language=EN, stringName=Ming Yue, firstName=Ming, middleName=null, lastName=Yue, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
    b State Key Laboratory of Rare Earth Permanent Magnetic Materials, Hefei 231500, China
    c Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117564632981739, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117564372934879, language=CN, stringName=岳明, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
    b State Key Laboratory of Rare Earth Permanent Magnetic Materials, Hefei 231500, China
    c Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117564712673519, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117564838502646, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117564712673519, language=EN, stringName=Qingmei Lu, firstName=Qingmei, middleName=null, lastName=Lu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
    c Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117564914000121, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117564712673519, language=CN, stringName=路清梅, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
    c Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117564997886205, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117565123715332, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117564997886205, language=EN, stringName=Min Liu, firstName=Min, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
    c Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117565203407111, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117564997886205, language=CN, stringName=刘敏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
    c Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117565287293196, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117565429899538, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117565287293196, language=EN, stringName=Feng Wang, firstName=Feng, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117565538951446, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117565287293196, language=CN, stringName=王峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117565643809051, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117565782221087, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117565643809051, language=EN, stringName=Yubing Qiu, firstName=Yubing, middleName=null, lastName=Qiu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117565891272994, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117565643809051, language=CN, stringName=邱玉冰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117565996130598, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117566205845806, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117565996130598, language=EN, stringName=Weiqiang Liu, firstName=Weiqiang, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
    b State Key Laboratory of Rare Earth Permanent Magnetic Materials, Hefei 231500, China
    c Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117566306509105, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117565996130598, language=CN, stringName=刘卫强, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
    b State Key Laboratory of Rare Earth Permanent Magnetic Materials, Hefei 231500, China
    c Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117566407172403, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117566562361658, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117566407172403, language=EN, stringName=Tieyong Zuo, firstName=Tieyong, middleName=null, lastName=Zuo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
    c Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117566658830652, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117566407172403, language=CN, stringName=左铁镛, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
    c Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117566759493952, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117566918877508, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117566759493952, language=EN, stringName=Shanshun Zha, firstName=Shanshun, middleName=null, lastName=Zha, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, d, address=b State Key Laboratory of Rare Earth Permanent Magnetic Materials, Hefei 231500, China
    d Earth-Panda Advanced Magnetic Materials Co., Ltd., Hefei 231500, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117567015346501, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117566759493952, language=CN, stringName=查善顺, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, d, address=b State Key Laboratory of Rare Earth Permanent Magnetic Materials, Hefei 231500, China
    d Earth-Panda Advanced Magnetic Materials Co., Ltd., Hefei 231500, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117567111815496, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, orderNo=9, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117567275393357, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117567111815496, language=EN, stringName=Xuliang Li, firstName=Xuliang, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, d, address=b State Key Laboratory of Rare Earth Permanent Magnetic Materials, Hefei 231500, China
    d Earth-Panda Advanced Magnetic Materials Co., Ltd., Hefei 231500, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117567376056656, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117567111815496, language=CN, stringName=李绪亮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, d, address=b State Key Laboratory of Rare Earth Permanent Magnetic Materials, Hefei 231500, China
    d Earth-Panda Advanced Magnetic Materials Co., Ltd., Hefei 231500, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117567485108564, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, orderNo=10, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117567657075033, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117567485108564, language=EN, stringName=Xiaofei Yi, firstName=Xiaofei, middleName=null, lastName=Yi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, d, address=b State Key Laboratory of Rare Earth Permanent Magnetic Materials, Hefei 231500, China
    d Earth-Panda Advanced Magnetic Materials Co., Ltd., Hefei 231500, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117567766126939, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913308100813301, authorId=1166117567485108564, language=CN, stringName=衣晓飞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, d, address=b State Key Laboratory of Rare Earth Permanent Magnetic Materials, Hefei 231500, China
    d Earth-Panda Advanced Magnetic Materials Co., Ltd., Hefei 231500, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Xiaowen Yin , Ming Yue , Qingmei Lu , Min Liu , Feng Wang , Yubing Qiu , Weiqiang Liu , Tieyong Zuo , Shanshun Zha , Xuliang Li , Xiaofei Yi

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Efficient Nanostructuring of Isotropic Gas-Atomized MnAl Powder by Rapid Milling (30 s)
    [Author(id=1166116109075276383, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906567065756141, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116109222077025, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906567065756141, authorId=1166116109075276383, language=EN, stringName=J. Rial, firstName=J., middleName=null, lastName=Rial, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Permanent Magnets and Applications, IMDEA Nanoscience, Campus Universidad Autónoma de Madrid, Madrid 28049, Spain, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116109326934626, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906567065756141, authorId=1166116109075276383, language=CN, stringName=J. Rial, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Permanent Magnets and Applications, IMDEA Nanoscience, Campus Universidad Autónoma de Madrid, Madrid 28049, Spain, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116109440180836, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906567065756141, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116109582787174, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906567065756141, authorId=1166116109440180836, language=EN, stringName=E.M. Palmero, firstName=E.M., middleName=null, lastName=Palmero, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Permanent Magnets and Applications, IMDEA Nanoscience, Campus Universidad Autónoma de Madrid, Madrid 28049, Spain, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116109683450471, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906567065756141, authorId=1166116109440180836, language=CN, stringName=E.M. Palmero, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Permanent Magnets and Applications, IMDEA Nanoscience, Campus Universidad Autónoma de Madrid, Madrid 28049, Spain, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116109775725161, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906567065756141, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116109897359979, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906567065756141, authorId=1166116109775725161, language=EN, stringName=A. Bollero, firstName=A., middleName=null, lastName=Bollero, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Permanent Magnets and Applications, IMDEA Nanoscience, Campus Universidad Autónoma de Madrid, Madrid 28049, Spain, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116109989634668, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906567065756141, authorId=1166116109775725161, language=CN, stringName=A. Bollero, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Permanent Magnets and Applications, IMDEA Nanoscience, Campus Universidad Autónoma de Madrid, Madrid 28049, Spain, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] J. Rial , E.M. Palmero , A. Bollero

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Thermal and Mechanical Properties Optimization of ABO4 Type EuNbO4 By the B-Site Substitution of Ta
    [Author(id=1166117705192497976, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913836994158643, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117705326715706, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913836994158643, authorId=1166117705192497976, language=EN, stringName=Lin Chen, firstName=Lin, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117705423184699, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913836994158643, authorId=1166117705192497976, language=CN, stringName=陈琳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117705523847997, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913836994158643, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117705649677119, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913836994158643, authorId=1166117705523847997, language=EN, stringName=Jing Feng, firstName=Jing, middleName=null, lastName=Feng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117705750340416, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159913836994158643, authorId=1166117705523847997, language=CN, stringName=冯晶, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Lin Chen , Jing Feng

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Multi-Peptide Adsorption on Uncharged Solid Surfaces: A Coarse-Grained Simulation Study
    [Author(id=1166116096580444628, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906425705128290, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116096756605400, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906425705128290, authorId=1166116096580444628, language=EN, stringName=Ruosang Qiu, firstName=Ruosang, middleName=null, lastName=Qiu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
    b Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116096869851611, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906425705128290, authorId=1166116096580444628, language=CN, stringName=裘若桑, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
    b Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116096970514908, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906425705128290, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116097226367455, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906425705128290, authorId=1166116096970514908, language=EN, stringName=Jie Xiao, firstName=Jie, middleName=null, lastName=Xiao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116097335419360, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906425705128290, authorId=1166116096970514908, language=CN, stringName=肖杰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166116097444471266, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906425705128290, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166116097587077604, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906425705128290, authorId=1166116097444471266, language=EN, stringName=Xiao Dong Chen, firstName=Xiao Dong, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166116097687740901, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159906425705128290, authorId=1166116097444471266, language=CN, stringName=陈晓东, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Ruosang Qiu , Jie Xiao , Xiao Dong Chen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Fabrication and Mechanical Testing of Ultralight Folded Lattice-Core Sandwich Cylinders
    [Author(id=1166117403852727056, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914273268884323, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117403995333394, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914273268884323, authorId=1166117403852727056, language=EN, stringName=Wanxin Li, firstName=Wanxin, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory for Disaster Prevention & Mitigation of Explosion & Impact, Army Engineering University of PLA, Nanjing 210007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117404108579603, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914273268884323, authorId=1166117403852727056, language=CN, stringName=

    李万欣

    , firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory for Disaster Prevention & Mitigation of Explosion & Impact, Army Engineering University of PLA, Nanjing 210007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117404213437205, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914273268884323, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117404356043543, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914273268884323, authorId=1166117404213437205, language=EN, stringName=Qing Zheng, firstName=Qing, middleName=null, lastName=Zheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Research Center of Lightweight Structures and Intelligent Manufacturing, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117404511232792, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914273268884323, authorId=1166117404213437205, language=CN, stringName=郑青, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Research Center of Lightweight Structures and Intelligent Manufacturing, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117404624479002, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914273268884323, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117404754502428, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914273268884323, authorId=1166117404624479002, language=EN, stringName=Hualin Fan, firstName=Hualin, middleName=null, lastName=Fan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Research Center of Lightweight Structures and Intelligent Manufacturing, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117404834194205, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914273268884323, authorId=1166117404624479002, language=CN, stringName=范华林, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Research Center of Lightweight Structures and Intelligent Manufacturing, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166117404913885983, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914273268884323, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166117405014549281, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914273268884323, authorId=1166117404913885983, language=EN, stringName=Bin Ji, firstName=Bin, middleName=null, lastName=Ji, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Aerospace System Engineering Shanghai, Shanghai 201108, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166117405094241058, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159914273268884323, authorId=1166117404913885983, language=CN, stringName=冀宾, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Aerospace System Engineering Shanghai, Shanghai 201108, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Wanxin Li , Qing Zheng , Hualin Fan , Bin Ji

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.