2020-05-29 , Volume 6 Issue 5

Cover illustration

  •  

    Green plant protection is an underlying principle of sustainable agriculture, with less dependence on synthetic chemical pesticides and fertilizers, and more use of the innate ability of crop plants to resist diseases. A new potential direction for green plant protection involves activating host plants' endoplasmic reticulum (ER) stress-mediated immunity, which is induced by pathogen infection. Thus, it is crucial to understand how pathogens break through ER stress-mediated immunity for successful colonization. This image shows the Phytophthora sojae effector PsAvh262 co-localized with the host susceptibility factor GmBiP1 to the ER and extrahaustorial membrane during infection. PsAvh262 then stabilizes the GmBiP1, resulting in the suppression of ER stress-mediated immunity and programmed cell death. In this image, PsAvh262 or GmBiP1 was fused with green or red fluorescent protein, respectively.

    Download cover

  • Select all
    Editorial
  • Green Plant Protection Innovation: Challenges and Perspectives
    [Author(id=1166123384116535801, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924711603889130, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166123384263336443, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924711603889130, authorId=1166123384116535801, language=EN, stringName=Baoan Song, firstName=Baoan, middleName=null, lastName=Song, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166123384372388348, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924711603889130, authorId=1166123384116535801, language=CN, stringName=宋宝安, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166123384485634558, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924711603889130, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166123384636629504, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924711603889130, authorId=1166123384485634558, language=EN, stringName=James N. Seiber, firstName=James N., middleName=null, lastName=Seiber, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b University of California, Davis, CA 95616, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166123384745681409, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924711603889130, authorId=1166123384485634558, language=CN, stringName=James N. Seiber, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b University of California, Davis, CA 95616, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166123384854733315, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924711603889130, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166123385014116869, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924711603889130, authorId=1166123384854733315, language=EN, stringName=Stephen O. Duke, firstName=Stephen O., middleName=null, lastName=Duke, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c National Center for Natural Products Research, Thad Cochran Research Center, School of Pharmacy, University of Mississippi, Oxford, MS 38655, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166123385127363078, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924711603889130, authorId=1166123384854733315, language=CN, stringName=Stephen O. Duke, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c National Center for Natural Products Research, Thad Cochran Research Center, School of Pharmacy, University of Mississippi, Oxford, MS 38655, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166123385236414984, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924711603889130, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166123385387409930, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924711603889130, authorId=1166123385236414984, language=EN, stringName=Qing X. Li, firstName=Qing X., middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166123385500656139, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924711603889130, authorId=1166123385236414984, language=CN, stringName=李庆孝, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Baoan Song , James N. Seiber , Stephen O. Duke , Qing X. Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • Three-Dimensional Chip Imaging
    [Author(id=1166122811682120465, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924719581455341, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122811807949590, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924719581455341, authorId=1166122811682120465, language=EN, stringName=Marcus Woo, firstName=Marcus, middleName=null, lastName=Woo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122811908612889, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924719581455341, authorId=1166122811682120465, language=CN, stringName=Marcus Woo, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Marcus Woo

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Development of Lithium-Ion Batteries Wins Nobel Prize
    [Author(id=1166122811820532503, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924731740742639, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122811937973018, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924731740742639, authorId=1166122811820532503, language=EN, stringName=Sean O'Neill, firstName=Sean, middleName=null, lastName=O'Neill, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122812021859099, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924731740742639, authorId=1166122811820532503, language=CN, stringName=Sean O'Neill, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Sean O'Neill

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Will Cryptocurrencies Break the Energy Bank?
    [Author(id=1166122812546147110, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924718734205932, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122812688753452, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924718734205932, authorId=1166122812546147110, language=EN, stringName=Mitch Leslie, firstName=Mitch, middleName=null, lastName=Leslie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122812797805359, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924718734205932, authorId=1166122812546147110, language=CN, stringName=Mitch Leslie, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Mitch Leslie

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • Key Technologies of Forest Resource Examination System Development in China
    [Author(id=1166123486746960663, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925302187057694, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166123486889567001, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925302187057694, authorId=1166123486746960663, language=EN, stringName=Xiuli Zhao, firstName=Xiuli, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166123486994424602, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925302187057694, authorId=1166123486746960663, language=CN, stringName=赵修莉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166123487099282204, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925302187057694, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166123487241888542, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925302187057694, authorId=1166123487099282204, language=EN, stringName=Zhongke Feng, firstName=Zhongke, middleName=null, lastName=Feng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166123487346746143, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925302187057694, authorId=1166123487099282204, language=CN, stringName=冯仲科, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166123487451603745, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925302187057694, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166123487594210083, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925302187057694, authorId=1166123487451603745, language=EN, stringName=Yangyang Zhou, firstName=Yangyang, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166123487694873380, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925302187057694, authorId=1166123487451603745, language=CN, stringName=周扬扬, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166123487799730982, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925302187057694, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166123487942337320, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925302187057694, authorId=1166123487799730982, language=EN, stringName=Yicheng Lin, firstName=Yicheng, middleName=null, lastName=Lin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166123488047194921, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925302187057694, authorId=1166123487799730982, language=CN, stringName=林奕成, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xiuli Zhao , Zhongke Feng , Yangyang Zhou , Yicheng Lin

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Constructing an Automation Table for an Image-Based Arabidopsis Resistance Assay
    [Author(id=1166121730755453860, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917628233933437, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121730906448809, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917628233933437, authorId=1166121730755453860, language=EN, stringName=Goldi Makhija, firstName=Goldi, middleName=null, lastName=Makhija, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a Department of Engineering Technology, Texas State University, San Marcos, TX 78666, USA
    c Caresoft Global Inc., Burr Ridge, IL 60527, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121730998723499, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917628233933437, authorId=1166121730755453860, language=CN, stringName=Goldi Makhija, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a Department of Engineering Technology, Texas State University, San Marcos, TX 78666, USA
    c Caresoft Global Inc., Burr Ridge, IL 60527, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121731090998190, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917628233933437, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121731216827313, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917628233933437, authorId=1166121731090998190, language=EN, stringName=Dinesh S. Pujara, firstName=Dinesh S., middleName=null, lastName=Pujara, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Biology, Texas State University, San Marcos, TX 78666, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121731309102003, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917628233933437, authorId=1166121731090998190, language=CN, stringName=Dinesh S. Pujara, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Biology, Texas State University, San Marcos, TX 78666, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121731401376694, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917628233933437, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121731531400121, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917628233933437, authorId=1166121731401376694, language=EN, stringName=In-Hyouk Song, firstName=In-Hyouk, middleName=null, lastName=Song, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Engineering Technology, Texas State University, San Marcos, TX 78666, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121731623674811, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917628233933437, authorId=1166121731401376694, language=CN, stringName=In-Hyouk Song, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Engineering Technology, Texas State University, San Marcos, TX 78666, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121731715949501, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917628233933437, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121731841778624, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917628233933437, authorId=1166121731715949501, language=EN, stringName=Byoung Hee You, firstName=Byoung Hee, middleName=null, lastName=You, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Engineering Technology, Texas State University, San Marcos, TX 78666, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121731929859010, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917628233933437, authorId=1166121731715949501, language=CN, stringName=Byoung Hee You, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Engineering Technology, Texas State University, San Marcos, TX 78666, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121732026328005, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917628233933437, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121732147962824, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917628233933437, authorId=1166121732026328005, language=EN, stringName=Hong-Gu Kang, firstName=Hong-Gu, middleName=null, lastName=Kang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Biology, Texas State University, San Marcos, TX 78666, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121732244431818, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917628233933437, authorId=1166121732026328005, language=CN, stringName=Hong-Gu Kang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Biology, Texas State University, San Marcos, TX 78666, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Goldi Makhija , Dinesh S. Pujara , In-Hyouk Song , Byoung Hee You , Hong-Gu Kang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Plant Pathogens Utilize Effectors to Hijack the Host Endoplasmic Reticulum as Part of Their Infection Strategy
    [Author(id=1166122571520467557, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917553147503190, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122571709211240, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917553147503190, authorId=1166122571520467557, language=EN, stringName=Maofeng Jing, firstName=Maofeng, middleName=null, lastName=Jing, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
    b Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122571826651753, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917553147503190, authorId=1166122571520467557, language=CN, stringName=景茂峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
    b Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122571939897963, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917553147503190, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122572124447342, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917553147503190, authorId=1166122571939897963, language=EN, stringName=Yuanchao Wang, firstName=Yuanchao, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
    b Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122572233499247, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917553147503190, authorId=1166122571939897963, language=CN, stringName=王源超, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
    b Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Maofeng Jing , Yuanchao Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Topic Insights
  • Engineering Disease Resistance in Crop Plants: Callosic Papillae as Potential Targets
    [Author(id=1166123779370967495, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924806776840213, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166123779526156745, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924806776840213, authorId=1166123779370967495, language=EN, stringName=Geoffrey B. Fincher, firstName=Geoffrey B., middleName=null, lastName=Fincher, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Agriculture, The University of Adelaide, Glen Osmond, SA 5066, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166123779647791562, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924806776840213, authorId=1166123779370967495, language=CN, stringName=Geoffrey B. Fincher, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Agriculture, The University of Adelaide, Glen Osmond, SA 5066, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Geoffrey B. Fincher

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Perspective
    Discovery for New Herbicide Sites of Action by Quantification of plant Primary Metabolite and Enzyme Pools
    [Author(id=1166122559965159931, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917543542547016, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122560086794750, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917543542547016, authorId=1166122559965159931, language=EN, stringName=Franck E. Dayan, firstName=Franck, middleName=null, lastName=E. Dayan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Agricultural Biology, College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80523, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122560179069440, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917543542547016, authorId=1166122559965159931, language=CN, stringName=Franck E. Dayan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Agricultural Biology, College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80523, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122560267149826, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917543542547016, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122560392978950, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917543542547016, authorId=1166122560267149826, language=EN, stringName=Stephen O. Duke, firstName=Stephen, middleName=null, lastName=O. Duke, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Natural Products Utilization Research, Agricultural Research Service, United States Department of Agriculture, University, MS 38677, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122560489447943, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917543542547016, authorId=1166122560267149826, language=CN, stringName=Stephen O. Duke, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Natural Products Utilization Research, Agricultural Research Service, United States Department of Agriculture, University, MS 38677, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Franck E. Dayan , Stephen O. Duke

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Neurolemma-Injected Xenopus Oocytes: An Innovative Ex Vivo Approach to Study the Effects of Pyrethroids on Ion Channels in Their Native State
    [Author(id=1166123435349959312, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924961135616156, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166123435496759954, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924961135616156, authorId=1166123435349959312, language=EN, stringName=John Clark, firstName=John, middleName=null, lastName=Clark, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a University of Massachusetts, Amherst, MA 01003, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166123435605811859, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924961135616156, authorId=1166123435349959312, language=CN, stringName=John Clark, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a University of Massachusetts, Amherst, MA 01003, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166123435714863765, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924961135616156, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166123435870053015, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924961135616156, authorId=1166123435714863765, language=EN, stringName=Steve Symington, firstName=Steve, middleName=null, lastName=Symington, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Salve Regina University, Newport, RI 02840, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166123435979104920, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924961135616156, authorId=1166123435714863765, language=CN, stringName=Steve Symington, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Salve Regina University, Newport, RI 02840, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] John Clark , Steve Symington

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    RNA-Based Biocontrols—A New Paradigm in Crop Protection
    [Author(id=1166121595388485711, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917744453903086, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121595493343312, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917744453903086, authorId=1166121595388485711, language=EN, stringName=Matthew Bramlett, firstName=Matthew, middleName=null, lastName=Bramlett, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121595598200913, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917744453903086, authorId=1166121595388485711, language=CN, stringName=Matthew Bramlett, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121595711447123, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917744453903086, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121595816304724, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917744453903086, authorId=1166121595711447123, language=EN, stringName=Geert Plaetinck, firstName=Geert, middleName=null, lastName=Plaetinck, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121595925356629, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917744453903086, authorId=1166121595711447123, language=CN, stringName=Geert Plaetinck, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121596030214231, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917744453903086, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121596139266136, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917744453903086, authorId=1166121596030214231, language=EN, stringName=Peter Maienfisch, firstName=Peter, middleName=null, lastName=Maienfisch, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121596244123737, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917744453903086, authorId=1166121596030214231, language=CN, stringName=Peter Maienfisch, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Matthew Bramlett , Geert Plaetinck , Peter Maienfisch

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Remote Sensing and Precision Agriculture Technologies for Crop Disease Detection and Management with a Practical Application Example
    [Author(id=1166122831814779806, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924805984116756, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122831957386144, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924805984116756, authorId=1166122831814779806, language=EN, stringName=Chenghai Yang, firstName=Chenghai, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Aerial Application Technology Research Unit, Agricultural Research Service, US Department of Agriculture, College Station, Texas 77845, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122832070632353, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924805984116756, authorId=1166122831814779806, language=CN, stringName=杨成海, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Aerial Application Technology Research Unit, Agricultural Research Service, US Department of Agriculture, College Station, Texas 77845, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Chenghai Yang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Rhamnolipids Induced by Glycerol Enhance Dibenzothiophene Biodegradation in Burkholderia sp. C3
    [Author(id=1166122749170213407, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924937261637775, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122749321208353, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924937261637775, authorId=1166122749170213407, language=EN, stringName=Camila A. Ortega Ramirez, firstName=Camila A. Ortega, middleName=null, lastName=Ramirez, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122749434454562, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924937261637775, authorId=1166122749170213407, language=CN, stringName=Camila A. Ortega Ramirez, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122749551895076, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924937261637775, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122749740638758, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924937261637775, authorId=1166122749551895076, language=EN, stringName=Abraham Kwan, firstName=Abraham, middleName=null, lastName=Kwan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122749858079271, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924937261637775, authorId=1166122749551895076, language=CN, stringName=Abraham Kwan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122749967131177, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924937261637775, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122750084571691, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924937261637775, authorId=1166122749967131177, language=EN, stringName=Qing X. Li, firstName=Qing X., middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122750168457772, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159924937261637775, authorId=1166122749967131177, language=CN, stringName=Qing X. Li, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Camila A. Ortega Ramirez , Abraham Kwan , Qing X. Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Putative Mode of Action of the Monoterpenoids Linalool, Methyl Eugenol, Estragole, and Citronellal on Ligand-Gated Ion Channels
    [Author(id=1166121637872591308, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918126517248331, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121638048752079, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918126517248331, authorId=1166121637872591308, language=EN, stringName=Amy S. Li, firstName=Amy S., middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
    c Department of Internal Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121638153609680, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918126517248331, authorId=1166121637872591308, language=CN, stringName=Amy S. Li, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
    c Department of Internal Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121638262661586, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918126517248331, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121638405267924, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918126517248331, authorId=1166121638262661586, language=EN, stringName=Akimasa Iijima, firstName=Akimasa, middleName=null, lastName=Iijima, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121638514319829, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918126517248331, authorId=1166121638262661586, language=CN, stringName=Akimasa Iijima, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121638619177431, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918126517248331, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121638765978073, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918126517248331, authorId=1166121638619177431, language=EN, stringName=Junhao Huang, firstName=Junhao, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, , address=a College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121638879224282, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918126517248331, authorId=1166121638619177431, language=CN, stringName=Junhao Huang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, , address=a College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121638984081884, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918126517248331, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121639122493918, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918126517248331, authorId=1166121638984081884, language=EN, stringName=Qing X. Li, firstName=Qing X., middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121639231545823, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918126517248331, authorId=1166121638984081884, language=CN, stringName=Qing X. Li, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121639340597729, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918126517248331, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121639479009763, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918126517248331, authorId=1166121639340597729, language=EN, stringName=Yongli Chen, firstName=Yongli, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121639588061668, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918126517248331, authorId=1166121639340597729, language=CN, stringName=Yongli Chen, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Amy S. Li , Akimasa Iijima , Junhao Huang , Qing X. Li , Yongli Chen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Nascent Polypeptide-Associated Complex Involved in the Development and Pathogenesis of Fusarium graminearum on Wheat
    [Author(id=1166121577831130017, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917598068499046, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166121577961153443, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917598068499046, authorId=1166121577831130017, language=EN, stringName=Xuli Wang, firstName=Xuli, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, *, address=a State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121578066011044, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917598068499046, authorId=1166121577831130017, language=CN, stringName=王旭丽, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, *, address=a State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121578166674342, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917598068499046, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166121578334446505, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917598068499046, authorId=1166121578166674342, language=EN, stringName=Xin Xie, firstName=Xin, middleName=null, lastName=Xie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
    b College of Agriculture, Guizhou University, Guiyang 550025, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121578439304106, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917598068499046, authorId=1166121578166674342, language=CN, stringName=谢鑫, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
    b College of Agriculture, Guizhou University, Guiyang 550025, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121578539967404, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917598068499046, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121578674185137, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917598068499046, authorId=1166121578539967404, language=EN, stringName=Jin Liu, firstName=Jin, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121578774848437, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917598068499046, authorId=1166121578539967404, language=CN, stringName=刘敬, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121578875511736, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917598068499046, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121579043283899, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917598068499046, authorId=1166121578875511736, language=EN, stringName=Guo-Liang Wang, firstName=Guo-Liang, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
    c Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121579139752892, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917598068499046, authorId=1166121578875511736, language=CN, stringName=王国梁, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
    c Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166121579232027582, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917598068499046, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166121579353662400, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917598068499046, authorId=1166121579232027582, language=EN, stringName=Dewen Qiu, firstName=Dewen, middleName=null, lastName=Qiu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166121579450131393, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917598068499046, authorId=1166121579232027582, language=CN, stringName=邱德文, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Xuli Wang , Xin Xie , Jin Liu , Guo-Liang Wang , Dewen Qiu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Design, Synthesis, and Biological Activity of Novel Aromatic Amide Derivatives Containing Sulfide and Sulfone Substructures
    [Author(id=1166122887519330377, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122887645159499, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, authorId=1166122887519330377, language=EN, stringName=Xuewen Hua, firstName=Xuewen, middleName=null, lastName=Hua, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a College of Agronomy, Liaocheng University, Liaocheng 252000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122887741628492, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, authorId=1166122887519330377, language=CN, stringName=华学文, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a College of Agronomy, Liaocheng University, Liaocheng 252000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122887833903182, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122887959732304, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, authorId=1166122887833903182, language=EN, stringName=Nannan Liu, firstName=Nannan, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Agronomy, Liaocheng University, Liaocheng 252000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122888056201297, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, authorId=1166122887833903182, language=CN, stringName=刘南南, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Agronomy, Liaocheng University, Liaocheng 252000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122888152670291, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122888274305109, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, authorId=1166122888152670291, language=EN, stringName=Sha Zhou, firstName=Sha, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Collaborative Innovation Center of Zhejiang Province for Green Pesticide, School Forestry and Bio-technology, Zhejiang A&F University, Hangzhou 311300, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122888366579798, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, authorId=1166122888152670291, language=CN, stringName=周沙, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Collaborative Innovation Center of Zhejiang Province for Green Pesticide, School Forestry and Bio-technology, Zhejiang A&F University, Hangzhou 311300, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122888463048792, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122888588877914, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, authorId=1166122888463048792, language=EN, stringName=Leilei Zhang, firstName=Leilei, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Agronomy, Liaocheng University, Liaocheng 252000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122888685346907, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, authorId=1166122888463048792, language=CN, stringName=张蕾蕾, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Agronomy, Liaocheng University, Liaocheng 252000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122888777621597, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122888903450719, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, authorId=1166122888777621597, language=EN, stringName=Hao Yin, firstName=Hao, middleName=null, lastName=Yin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Agronomy, Liaocheng University, Liaocheng 252000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122888999919712, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, authorId=1166122888777621597, language=CN, stringName=殷昊, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Agronomy, Liaocheng University, Liaocheng 252000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122889092194402, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122889218023524, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, authorId=1166122889092194402, language=EN, stringName=Guiqing Wang, firstName=Guiqing, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Agronomy, Liaocheng University, Liaocheng 252000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122889310298213, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, authorId=1166122889092194402, language=CN, stringName=王桂清, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Agronomy, Liaocheng University, Liaocheng 252000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122889402572903, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122889532596329, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, authorId=1166122889402572903, language=EN, stringName=Zhijin Fan, firstName=Zhijin, middleName=null, lastName=Fan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c State Key Laboratory of Elemento-Organic Chemistry, Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122889624871018, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, authorId=1166122889402572903, language=CN, stringName=范志金, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c State Key Laboratory of Elemento-Organic Chemistry, Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122889721340012, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122889842974830, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, authorId=1166122889721340012, language=EN, stringName=Yi Ma, firstName=Yi, middleName=null, lastName=Ma, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c State Key Laboratory of Elemento-Organic Chemistry, Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122889935249519, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925157001224564, authorId=1166122889721340012, language=CN, stringName=马翼, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c State Key Laboratory of Elemento-Organic Chemistry, Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xuewen Hua , Nannan Liu , Sha Zhou , Leilei Zhang , Hao Yin , Guiqing Wang , Zhijin Fan , Yi Ma

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Synthesis, Characterization, and Antifungal Evaluation of Thiolactomycin Derivatives
    [Author(id=1166122605691462422, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166122605829874456, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, authorId=1166122605691462422, language=EN, stringName=Pei Lv, firstName=Pei, middleName=null, lastName=Lv, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University, Hefei quaternion Fourier transform (QFT)–electrospray ionization 230036, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122605938926361, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, authorId=1166122605691462422, language=CN, stringName=吕培, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University, Hefei quaternion Fourier transform (QFT)–electrospray ionization 230036, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122606047978267, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166122606186390301, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, authorId=1166122606047978267, language=EN, stringName=Yiliang Chen, firstName=Yiliang, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University, Hefei quaternion Fourier transform (QFT)–electrospray ionization 230036, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122606291247902, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, authorId=1166122606047978267, language=CN, stringName=陈议亮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University, Hefei quaternion Fourier transform (QFT)–electrospray ionization 230036, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122606400299808, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122606538711842, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, authorId=1166122606400299808, language=EN, stringName=Dawei Wang, firstName=Dawei, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122606643569443, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, authorId=1166122606400299808, language=CN, stringName=王大伟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122606756815653, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122606895227687, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, authorId=1166122606756815653, language=EN, stringName=Xiangwei Wu, firstName=Xiangwei, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University, Hefei quaternion Fourier transform (QFT)–electrospray ionization 230036, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122607000085288, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, authorId=1166122606756815653, language=CN, stringName=吴祥为, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University, Hefei quaternion Fourier transform (QFT)–electrospray ionization 230036, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122607109137194, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122607285297965, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, authorId=1166122607109137194, language=EN, stringName=Qing X. Li, firstName=Qing, middleName=null, lastName=X. Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
    c Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122607390155566, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, authorId=1166122607109137194, language=CN, stringName=李庆孝, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
    c Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122607499207472, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122607637619506, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, authorId=1166122607499207472, language=EN, stringName=Rimao Hua, firstName=Rimao, middleName=null, lastName=Hua, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University, Hefei quaternion Fourier transform (QFT)–electrospray ionization 230036, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122607742477107, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159925012339679428, authorId=1166122607499207472, language=CN, stringName=华日茂, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University, Hefei quaternion Fourier transform (QFT)–electrospray ionization 230036, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Pei Lv , Yiliang Chen , Dawei Wang , Xiangwei Wu , Qing X. Li , Rimao Hua

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Ce-Doped Smart Adsorbents with Photoresponsive Molecular Switches for Selective Adsorption and Efficient Desorption
    [Author(id=1166122650851532978, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122650998333620, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, authorId=1166122650851532978, language=EN, stringName=Peng Tan, firstName=Peng, middleName=null, lastName=Tan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122651107385525, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, authorId=1166122650851532978, language=CN, stringName=谈朋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122651212243127, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122651359043769, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, authorId=1166122651212243127, language=EN, stringName=Yao Jiang, firstName=Yao, middleName=null, lastName=Jiang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122651468095674, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, authorId=1166122651212243127, language=CN, stringName=江耀, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122651572953276, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122651719753918, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, authorId=1166122651572953276, language=EN, stringName=Shi-Chao Qi, firstName=Shi-Chao, middleName=null, lastName=Qi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122651833000127, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, authorId=1166122651572953276, language=CN, stringName=亓士超, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122651937857729, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122652080464067, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, authorId=1166122651937857729, language=EN, stringName=Xia-Jun Gao, firstName=Xia-Jun, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122652189515972, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, authorId=1166122651937857729, language=CN, stringName=高夏君, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122652298567878, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122652441174216, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, authorId=1166122652298567878, language=EN, stringName=Xiao-Qin Liu, firstName=Xiao-Qin, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122652550226121, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, authorId=1166122652298567878, language=CN, stringName=刘晓勤*, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122652659278027, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122652801884365, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, authorId=1166122652659278027, language=EN, stringName=Lin-Bing Sun, firstName=Lin-Bing, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122652910936270, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159918082468667609, authorId=1166122652659278027, language=CN, stringName=孙林兵*, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Peng Tan , Yao Jiang , Shi-Chao Qi , Xia-Jun Gao , Xiao-Qin Liu , Lin-Bing Sun

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Molecular Simulations of Water Transport Resistance in Polyamide RO Membranes: Interfacial and Interior Contributions
    [Author(id=1166122639870845005, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917973425152010, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122640026034257, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917973425152010, authorId=1166122639870845005, language=EN, stringName=Yang Song, firstName=Yang, middleName=null, lastName=Song, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Materials-Oriented Chemical Engineering & College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122640135086163, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917973425152010, authorId=1166122639870845005, language=CN, stringName=宋阳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Materials-Oriented Chemical Engineering & College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122640235749461, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917973425152010, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122640348995671, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917973425152010, authorId=1166122640235749461, language=EN, stringName=Mingjie Wei, firstName=Mingjie, middleName=null, lastName=Wei, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=*, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122640449658968, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917973425152010, authorId=1166122640235749461, language=CN, stringName=魏明杰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=*, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122640558710874, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917973425152010, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122640705511516, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917973425152010, authorId=1166122640558710874, language=EN, stringName=Fang Xu, firstName=Fang, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Materials-Oriented Chemical Engineering & College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122640810369118, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917973425152010, authorId=1166122640558710874, language=CN, stringName=徐放, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Materials-Oriented Chemical Engineering & College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166122640915226720, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917973425152010, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166122641024278625, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917973425152010, authorId=1166122640915226720, language=EN, stringName=Yong Wang, firstName=Yong, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=*, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166122641129136226, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159917973425152010, authorId=1166122640915226720, language=CN, stringName=汪勇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=*, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yang Song , Mingjie Wei , Fang Xu , Yong Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.