Underground salt cavern CO2 storage (SCCS) offers the dual benefits of enabling extensive CO2 storage and facilitating the utilization of CO2 resources while contributing the regulation of the carbon market. Its economic and operational advantages over traditional carbon capture, utilization, and storage (CCUS) projects make SCCS a more cost-effective and flexible option. Despite the widespread use of salt caverns for storing various substances, differences exist between SCCS and traditional salt cavern energy storage in terms of gas-tightness, carbon injection, brine extraction control, long-term carbon storage stability, and site selection criteria. These distinctions stem from the unique phase change characteristics of CO2 and the application scenarios of SCCS. Therefore, targeted and forward-looking scientific research on SCCS is imperative. This paper introduces the implementation principles and application scenarios of SCCS, emphasizing its connections with carbon emissions, carbon utilization, and renewable energy peak shaving. It delves into the operational characteristics and economic advantages of SCCS compared with other CCUS methods, and addresses associated scientific challenges. In this paper, we establish a pressure equation for carbon injection and brine extraction, that considers the phase change characteristics of CO2, and we analyze the pressure during carbon injection. By comparing the viscosities of CO2 and other gases, SCCS’s excellent sealing performance is demonstrated. Building on this, we develop a long-term stability evaluation model and associated indices, which analyze the impact of the injection speed and minimum operating pressure on stability. Field countermeasures to ensure stability are proposed. Site selection criteria for SCCS are established, preliminary salt mine sites suitable for SCCS are identified in China, and an initial estimate of achievable carbon storage scale in China is made at over 51.8-77.7 million tons, utilizing only 20%-30% volume of abandoned salt caverns. This paper addresses key scientific and engineering challenges facing SCCS and determines crucial technical parameters, such as the operating pressure, burial depth, and storage scale, and it offers essential guidance for implementing SCCS projects in China.
Deep underground energy storage is the use of deep underground spaces for large-scale energy storage, which is an important way to provide a stable supply of clean energy, enable a strategic petroleum reserve, and promote the peak shaving of natural gas. Rock salt formations are ideal geological media for large-scale energy storage, and China is rich in salt rock resources and has a major shortage of energy storage space. Compared with the salt domes in other countries, the salt rock formations in China are typical lacustrine bedded salt rocks characterized by thin beds, high impurity content, and many interlayers. The development of large-scale energy storage in such salt formations presents scientific and technical challenges, including: ① developing a multiscale progressive failure and characterization method for the rock mass around an energy storage cavern, considering the effects of multifield and multiphase coupling; ② understanding the leakage evolution of large-scale deep underground energy storage caverns; ③ understanding the long-term performance evolution of large-scale deep underground energy storage caverns; ④ developing intelligent construction technologies for the deep underground salt caverns used for energy storage; and ⑤ ensuring the long-term function of deep underground energy storage spaces. The solution to these key scientific and technological problems lies in establishing a theoretical and technical foundation for the development of large-scale deep underground energy storage in China.
Subsurface geothermal energy storage has greater potential than other energy storage strategies in terms of capacity scale and time duration. Carbon dioxide (CO2) is regarded as a potential medium for energy storage due to its superior thermal properties. Moreover, the use of CO2 plumes for geothermal energy storage mitigates the greenhouse effect by storing CO2 in geological bodies. In this work, an integrated framework is proposed for synergistic geothermal energy storage and CO2 sequestration and utilization. Within this framework, CO2 is first injected into geothermal layers for energy accumulation. The resultant high-energy CO2 is then introduced into a target oil reservoir for CO2 utilization and geothermal energy storage. As a result, CO2 is sequestrated in the geological oil reservoir body. The results show that, as high-energy CO2 is injected, the average temperature of the whole target reservoir is greatly increased. With the assistance of geothermal energy, the geological utilization efficiency of CO2 is higher, resulting in a 10.1% increase in oil displacement efficiency. According to a storage-potential assessment of the simulated CO2 site, 110 years after the CO2 injection, the utilization efficiency of the geological body will be as high as 91.2%, and the final injection quantity of the CO2 in the site will be as high as 9.529 × 108 t. After 1000 years sequestration, the supercritical phase dominates in CO2 sequestration, followed by the liquid phase and then the mineralized phase. In addition, CO2 sequestration accounting for dissolution trapping increases significantly due to the presence of residual oil. More importantly, CO2 exhibits excellent performance in storing geothermal energy on a large scale; for example, the total energy stored in the studied geological body can provide the yearly energy supply for over 3.5 × 107 normal households. Application of this integrated approach holds great significance for large-scale geothermal energy storage and the achievement of carbon neutrality.