拟态防御技术

罗兴国, 仝青, 张铮, 邬江兴

中国工程科学 ›› 2016, Vol. 18 ›› Issue (6) : 69-73.

PDF(186 KB)
PDF(186 KB)
中国工程科学 ›› 2016, Vol. 18 ›› Issue (6) : 69-73. DOI: 10.15302/J-SSCAE-2016.06.014
专题研究
Original article

拟态防御技术

作者信息 +

Mimic Defense Technology

Author information +
History +

摘要

网络空间安全处于易攻难守的非平衡态势,主动防御技术作为网络空间防御技术的新星,其研究热度不断提高。本文以入侵容忍技术和移动目标防御技术为主线概括了主动防御技术的发展,并介绍了拟态防御技术理论、工程实践以及测试情况。通过分析对比拟态防御和入侵容忍、移动目标的异同,提出网络安全再平衡战略的研究重点和方向,为国家网络空间安全发展提供借鉴和参考。

Abstract

Cybersecurity is in an unbalanced situation: It is easy to attack cybersecurity but difficult to defend it. Active defense technology is a new direction in cybersecurity research that has attracted more and more attention. This paper summarizes the development of active defense via the introduction of intrusion tolerance technology and moving target defense technology. We then introduce the theory, implementation, and testing of mimic defense. By comparing mimic defense with intrusion tolerance and moving target defense, we propose a research direction and a key point in the cybersecurity rebalancing strategy in order to provide a reference for the development of national cybersecurity.

关键词

拟态防御 / 主动防御技术 / 网络安全再平衡

Keywords

mimic defense / active defense technology / cybersecurity rebalance

引用本文

导出引用
罗兴国, 仝青, 张铮. 拟态防御技术. 中国工程科学. 2016, 18(6): 69-73 https://doi.org/10.15302/J-SSCAE-2016.06.014

参考文献

[1]
Kenkre P S, Pai A, Colaco L. Real time intrusion detection and pre-vention system[C] //Satapathy S C, Biswal B N, Udgata S K, et al. Proceedings of the 3rd international conference on frontiers of intelli-gent computing: Theory and applications (FICTA)2014.
[2]
Wu J X. Mimic security defense in cyber space [J]. Secrecy Science and Technology, 2014, 10(1): 4–9.
[3]
Powell D, Stroud R. Project IST-1999-11583 malicious- and acciden-tal-fault tolerance for internet applications: Conceptual model and ar-chitecture of MAFTIA [R]. Newcastle: University of Newcastle upon Tyne, 2003.
[4]
Jajodia S, Ghosh A K, Swarup V, et al. Moving target defense: Creat-ing asymmetric uncertainty for cyber threats [M]. New York: Springer, 2011.
[5]
Gupta V, Lam V, Ramasamy HG V, et al. Dependability and perfor-mance evaluation of intrusion-tolerant server architectures [M]. Berlin: Springer, 2003.
[6]
Wang F, Jou F, Gong F, et al. SITAR: A scalable intrusion-tolerant architecture for distributed services [C]// Proceedings of the 2001 IEEE— Workshop on information assurance and security. New York: United States Military Academy, 2003.
[7]
Malkhi D, Reiter M. Byzantine quorum systems [J]. Distributed Com-puting, 1998, 11(4): 203–213.
[8]
Kewley D L, Bouchard J F. DARPA information assurance program dynamic defense experiment summary [J]. IEEE Transactions on Systems, Man, and Cybernetics. Part A, Systems and Humans, 2001, 31(4): 331–336.
[9]
Okhravi H, Hobson T, Bigelow D, et al. Finding focus in the blur of moving-target techniques [J]. IEEE Security & Privacy, 2014, 12(2): 16–26.
基金
中国工程院重大咨询项目“网络空间安全战略研究”(2015-ZD-10)
PDF(186 KB)

Accesses

Citation

Detail

段落导航
相关文章

/