
轻量化材料焊接车间智能化要素分析
Factor Analysis of Lightweight Material Welding Workshop Intelligentization
本文从轻量化材料焊接最终目标和需求、数字化和智能化技术发展趋势、焊接车间柔性构建三个维度出发,结合先进制造车间智能化和焊接工艺数字化技术发展趋势,分析得出了轻量化材料焊接车间智能化需满足的焊接控制管理实时化、焊接过程质量控制闭环化、焊接性分析数据化、焊接工艺分析智能化、快速互换装夹(柔性化)、焊缝质量检测工具化、焊接生产管理数字化、焊接基础数据库无纸化八大基本要素,并对这些要素分别进行了阐述,相关结论可以作为焊接车间智能化改造或新建的参考。
This paper conducts strategic research on the following three dimensions: final purpose and demand of lightweight material welding; development trends of digitized and intelligentized technology; and flexible construction of the welding workshop. By combining these dimensions with the technology development trends of advanced workshop intelligentization and welding process digitization, eight basic factors that lightweight welding workshop intelligentization should satisfy are obtained, including welding control management real-time transformation, quality control while welding closed loop transformation, welding analysis datamation, welding technology analysis intelligentization, rapid interchangeable clamping (flexibility), welding line quality inspection instrumentalization, welding production management digitization, and welding foundation database paperless transformation. Furthermore, this paper systematically explains these factors, and provides a related conclusion that could be used in reference to the improvement or new establishment of welding workshop intelligentization.
焊接工艺 / 焊接车间 / 智能化 / 轻量化材料 / 战略研究
welding technology / welding workshop / intelligentization / lightweight material / strategic research
[1] |
张宝柱, 孙洁琼. 钛合金在典型民用飞机机体结构上的应用现状 [J]. 航空工程进展, 2014, 5(3): 275–280.
|
[2] |
孙翔. 基于PID 技术铝合金MIG 焊工艺设计[D]. 长沙: 湖南大学(硕士学位论文), 2013.
|
[3] |
张磊 . 汽车轻量化材料及制造工艺研究现状 [J]. 科技展望 , 2017 (3): 38.
|
[4] |
肖祺, 何毅政. 泡沫铝材料在轨道列车上的应用 [J]. 科技展望, 2014 (3): 19–20.
|
[5] |
Seffer O, Pfeifer R, Springer A, et al. Investigations on laser beam welding of different dissimilar joints of steel and aluminum alloys for automotive lightweight construction [J]. Physics Procedia, 2016 (83): 383–395.
|
[6] |
段孟琪. 中国制造业的发展瓶颈与改进问题探究 [J]. 商场现代化, 2010 (30): 75–76.
|
[7] |
林尚扬, 关桥. 我国制造业焊接生产现状与发展战略研究 [J]. 机械工人: 热加工, 2004 (8): 16–20.
|
[8] |
张光先, 陈冬岩, 李朋. 焊接设备的数字化、网络化及群控系统[J]. 电焊机, 2013, 43(5): 10–16.
|
[9] |
孙西领. 长春博泽公司焊接生产线改进研究 [D]. 长春:吉林大学(硕士学位论文), 2014.
|
[10] |
周济. 制造业数字化智能化 [J]. 中国机械工程, 2012, 23(20): 2395–2400.
|
[11] |
张国军, 黄刚. 数字化工厂技术的应用现状与趋势 [J]. 航空制造技术, 2013 (8): 34–37.
|
[12] |
李晓延, 武传松, 李午申. 中国焊接制造领域学科发展研究 [J]. 机械工程学报, 2012, 48(6): 19–31.
|
[13] |
Lee D, Ku N, Kim T, et al. Development and application of an intelligent welding robot system for shipbuilding [J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(2): 377–388.
|
[14] |
刘检华, 孙连胜, 张旭, 等. 三维数字化设计制造技术内涵及关键问题 [J]. 计算机集成制造系统, 2014, 20(3): 494–504.
|
[15] |
刘金龙, 李江. 信息化焊接管理系统iWeld4.0 [J]. 金属加工(热加工), 2015 (12): 38–41.
|
[16] |
王振民, 冯允樑, 冯锐杰. 可视化人机交互系统的研制 [J]. 焊接技术, 2015, 44(2): 46–50.
|
[17] |
熊华平, 毛建英, 陈冰清, 等. 航空航天轻质高温结构材料的焊接技术研究进展 [J]. 材料工程, 2013 (10): 1–12.
|
[18] |
关桥. 焊接/ 连接与增材制造(3D 打印) [J]. 焊接, 2014 (5): 1–8.
|
[19] |
都东, 侯润石, 邵家鑫, 等. X 射线动态图像处理与焊缝缺陷自动检测 [C]. 镇江: 第十六次全国焊接学术会议, 2011.
|
[20] |
黄民, 李功. 焊缝超声无损检测中的缺陷智能识别方法研究 [J]. 中国设备工程, 2009 (4): 17–19.
|
[21] |
孟永奇. 激光技术在焊缝质量检测方法中的应用 [J]. 热加工工艺, 2013 (24): 225–227.
|
/
〈 |
|
〉 |