基于全寿命劣化分析的海底盾构隧道管片安全保障对策研究

刘四进, 何川, 孙齐, 封坤

中国工程科学 ›› 2017, Vol. 19 ›› Issue (6) : 52-60.

PDF(1620 KB)
PDF(1620 KB)
中国工程科学 ›› 2017, Vol. 19 ›› Issue (6) : 52-60. DOI: 10.15302/J-SSCAE-2017.06.008
专题研究
Orginal Article

基于全寿命劣化分析的海底盾构隧道管片安全保障对策研究

作者信息 +

Safety Guarantee Measures for Subsea Shield Tunnel Segments Based on Life Cycle Deterioration Analysis

Author information +
History +

摘要

管片接头是海底盾构隧道衬砌结构的薄弱环节,在海水的高压力与腐蚀环境的持续耦合作用下,其劣化性能严重影响整个海底盾构隧道衬砌结构的安全。本文在分析既有管片接头侵蚀劣化研究成果的基础上,引入隧道服役时间因素,建立可实现海水压力渗透与氯离子侵蚀的管片接头全寿命侵蚀劣化分析模型,分析了全寿命周期(100年)内海底隧道管片接头的渐进式侵蚀劣化规律,重点研究了海水压力与氯离子浓度对管片接头侵蚀劣化及钢筋锈蚀的影响,并基于全寿命周期内的侵蚀劣化分析,提出保障海底盾构隧道管片衬砌结构长期安全的最经济、最合理的对策。

Abstract

The segment joint is the weak link in the lining structure of subsea tunnels, as it is under the continuous coupled effect of high water pressure and the corrosive seawater environment. If its performance deteriorates, it will seriously affect the safety of the lining structure of entire subsea shield tunnels. Based on an analysis of existing research into segment joint erosion and deterioration, a tunnel service time factor is introduced. Considering the influence of seawater pressure infiltration and chloride ion erosion and migration, a model analyzing the erosion and deterioration of the segment joint over its whole life cycle was subsequently established. The law governing the progressive erosion and deterioration of the segment joints of subsea tunnels over the entire life cycle was analyzed. The effects of seawater pressure and ion concentration on the erosion, deterioration, and steel corrosion of segment joints were studied. Based on the analysis of erosion and deterioration over the entire life cycle, economic and rational measures to ensure the long-term safety of the segment lining structure of subsea shield tunnels were proposed.

关键词

盾构隧道 / 安全保障 / 劣化分析 / 离子侵蚀 / 管片接头

Keywords

shield tunnel / safety guarantee / deterioration analysis / ion erosion / segment joint

引用本文

导出引用
刘四进, 何川, 孙齐. 基于全寿命劣化分析的海底盾构隧道管片安全保障对策研究. 中国工程科学. 2017, 19(6): 52-60 https://doi.org/10.15302/J-SSCAE-2017.06.008

参考文献

[1]
Siemes T, Polder R, Vries H D. Design of concrete structures for durability Example: Chloride penetration in the lining of a bored tunnel [J]. Heron, 1998, 43(4): 227–224.
[2]
金伟良, 袁迎曙, 卫军, 等. 氯盐环境下混凝土结构耐久性理论与设计方法 [M]. 北京: 科学出版社, 2011.
[3]
Banger F, Grasberger S, Kuhl D, et al. Environmentally induced de-terioration of concrete: Physical motivation and numerical modeling [J]. Engineering Fracture Mechanics, 2003, 70(7–8): 891–910.
[4]
Richard B, Raguenean F, Cremona C, et al. A three-dimensional steel/concrete interface model including corrosion effects [J]. En-gineering Fracture Mechanics, 2010, 77(6): 951–973.
[5]
姬永生, 袁迎曙, 耿欧, 等. 氯盐外侵混凝土内钢筋的锈蚀特征及机理分析 [J]. 中国矿业大学学报, 2009, 38(3): 309–315.
[6]
工藤泉. 耐久性与防蚀性的研究—— 东京湾越湾公路盾构隧道 [J]. 郭树棠, 译. 隧道译丛, 1994(10): 20–28.
[7]
杨林德, 伍振志, 时蓓玲, 等. 开裂及接缝渗漏条件下越江盾构隧道管片混凝土氯离子运移规律研究 [J]. 岩土工程学报, 2008, 30(12): 1826–1831.
[8]
王永东. 基于氯盐侵蚀的海底隧道寿命预测模型研究 [J]. 结构工程师, 2012, 28(8): 57–62.
[9]
刘保东, 李鹏飞, 李林, 等. 混凝土含水率对强度得影响实验 [J]. 北京交通大学学报, 2011, 35(1): 9–12.
[10]
戴镇潮. 混凝土的抗渗性和抗渗要求 [J]. 商品混凝土, 2010 (1): 18–22.
[11]
宋国栋, 赵尚传, 付智, 等. 氯离子临界浓度研究现状与进展[J]. 公路交通科技: 应用技术版, 2009 (7): 128–132.
[12]
河野克哉, 市川牧彦, 梁承奎, 等. 混凝土中钢筋锈蚀的氯离子临界浓度及规范 [J]. 混凝土世界, 2011 (10): 34–39.
基金
中国工程院咨询项目“交通基础设施重大结构安全保障战略研究”(2015-XZ-28);国家重点研发计划(2016YFC0802201);国家自然科学基金资助项目(51578462)
PDF(1620 KB)

Accesses

Citation

Detail

段落导航
相关文章

/