我国汽车与环境协同发展进程中主要矛盾与发展方向研究

吴潇萌, 吴烨, 郝吉明

中国工程科学 ›› 2018, Vol. 20 ›› Issue (1) : 74-83.

PDF(807 KB)
PDF(807 KB)
中国工程科学 ›› 2018, Vol. 20 ›› Issue (1) : 74-83. DOI: 10.15302/J-SSCAE-2018.01.011
专题研究
Orginal Article

我国汽车与环境协同发展进程中主要矛盾与发展方向研究

作者信息 +

The Principal Contradiction and Coordination Development Strategies of Automobile Industry and Emission Control in China

Author information +
History +

摘要

本文对我国目前汽车的污染物排放特征进行了研究,对各类汽车污染物排放的历史数据进行了分析、总结与建模,对未来排放趋势进行了预测,并对我国未来汽车与环境协同发展进程中的瓶颈与主要矛盾进行了总结与梳理,提出了适用于我国的汽车与环境协同发展路线与重点发展方向,给出了相应的发展建议与控制对策。

Abstract

The rapid development of the automobile industry brings substantial environmental challenges to China. Therefore, integrated development strategies targeting both the automobile industry and emission control, although difficult, are essential. Based on a localized model, this paper analyzes the characteristics of and historical trends in China's vehicle emissions and quantifies future trends under various emission control scenarios. The research summarizes and combs the bottlenecks and main contradictions in the process of synergetic development of China's future automobile industry and environmental improvement, puts forward the roadmap for the synergetic development applicable to China, and gives corresponding development proposals and control strategies.

关键词

汽车强国 / 协同发展 / 汽车排放控制

Keywords

automobile power / coordination development / vehicle emission control

引用本文

导出引用
吴潇萌, 吴烨, 郝吉明. 我国汽车与环境协同发展进程中主要矛盾与发展方向研究. 中国工程科学. 2018, 20(1): 74-83 https://doi.org/10.15302/J-SSCAE-2018.01.011

参考文献

[1]
中华人民共和国国家统计局. 中国统计年鉴—2015 [M]. 北京:中国统计出版社, 2015.
[2]
中国汽车工业协会. 2015 中国汽车工业年鉴 [M]. 北京: 中国商业出版社, 2015.
[3]
Wu X, Wu Y, Zhang S, et al. Assessment of vehicle emission 083中国工程科学 2018 年 第 20 卷 第 1 期programs in China during 1998—2013: Achievement, challenges and implications [J]. Environmental Pollution, 2016, 214: 556–567.
[4]
吴潇萌. 中国道路机动车空气污染物与CO2 排放协同控制策略研究 [D]. 北京: 清华大学(博士毕业论文), 2016.
[5]
Wu Y, Zhang S J, Li M L, et al. The challenge to NOX emission control for heavy-duty diesel vehicles in China [J]. Atmospheric Chemistry and Physics, 2012, 12(19): 9365–9379.
[6]
Andress D, Das S, Joseck F, et al. Status of advanced light-duty transportation technologies in the US [J]. Energy Policy, 2012 (41): 348–364.
[7]
Zhan R, Eakle S T, Weber P. Simultaneous reduction of PM, HC, CO and NOX emissions from a GDI engine [R].
[8]
Fontaras G, Franco V, Dilara P, et al. Development and review of Euro 5 passenger car emission factors based on experimental results over various driving cycles [J]. Science of the Total Environment, 2014, 468–469: 1034–1042.
[9]
Quiros D, Hu S H, Hu S S, et al. Particle effective density and mass during steady-state operation of GDI, PFI, and diesel passenger cars [J]. Journal of Aerosol Science, 2015 (83): 39–54.
[10]
Bennion K, Thornton M. Fuel savings from hybrid electric vehicles, NREL/TP-540-42681 [R]. Golden: National Renewable Energy Laboratory, 2009.
[11]
Millo F, Rolando L, Fuso R, et al. Real CO2 emissions benefits and end user’s operating costs of a plug-in Hybrid Electric Vehicle [J]. Applied Energy, 2014, 114: 563–571.
[12]
Cooper J, Phillips P. Final analysis: NOX emissions control for Euro 6 [J]. Platinum Metals Review, 2013, 57(2): 157–159.
基金
中国工程院咨询项目“汽车强国战略研究”(2015-XZ-36)
PDF(807 KB)

Accesses

Citation

Detail

段落导航
相关文章

/