车用内燃机技术发展趋势

苏万华, 张众杰, 刘瑞林, 乔英俊

中国工程科学 ›› 2018, Vol. 20 ›› Issue (1) : 97-103.

PDF(1831 KB)
PDF(1831 KB)
中国工程科学 ›› 2018, Vol. 20 ›› Issue (1) : 97-103. DOI: 10.15302/J-SSCAE-2018.01.014
专题研究
Orginal Article

车用内燃机技术发展趋势

作者信息 +

Development Trend for Technology of Vehicle Internal Combustion Engine

Author information +
History +

摘要

为实现车辆低碳排放和零污染控制,笔者比较了新能源车和内燃机的各自优势,指出在未来相当长的时间内,内燃机仍将是汽车的主要原动力。本文总结了目前高效、节能、清洁的内燃机新技术,包括:先进燃烧技术、高增压和小型强化技术、多系统多变量控制技术、余热回收技术、智能停缸技术、缸内喷水技术等。最后指出,在环境污染、全球变暖、能源危机迫切的压力下,高效、清洁的内燃机新技术层出不穷,可挖掘潜力巨大,我国内燃机工业不可懈怠,自主发展高效清洁的内燃机是我国汽车工业走向汽车强国的重要组成部分。

Abstract

This study compares the advantages of new energy vehicles and internal combustion engines to achieve low carbon emissions and zero pollution. Internal combustion engines are predicted to remain the main driving force of automobiles for a long time in the future. High-efficiency, energy-saving, and clean new technologies for the automobile internal combustion engine are summarized herein, including advanced combustion, turbocharging and small enhancement, multi-system and multi-variable control, waste heat recovery, intelligent cylinder stop, and cylinder water spraying technology, among others. New internal combustion engine technologies with great potential have endlessly emerged in response to the pressure of environmental pollution, global warming, and energy crisis. The internal combustion engine industry in China cannot be slack because it is an important part of the advancement of China's automobile industry toward automobile power.

关键词

内燃机 / 技术优势 / 发展潜力 / 新技术 / 高效清洁

Keywords

internal combustion engine / technical advantages / development potential / new technology / high efficiency and clean

引用本文

导出引用
苏万华, 张众杰, 刘瑞林. 车用内燃机技术发展趋势. 中国工程科学. 2018, 20(1): 97-103 https://doi.org/10.15302/J-SSCAE-2018.01.014

参考文献

[1]
Michael R, Andrew T, Hadi Z. The most innovative companies 2015 [R]. Boston: The Boston Consulting Croup, 2015.
[2]
苏万华. 高密度– 低温柴油机燃烧理论与技术的研究与进展 [J]. 内燃机学报, 2008, 26(s1): 1–8.
[3]
Moon S. Strategies to realize 45 % thermal efficiency of gasoline engines [J]. Journal of the Korean Society of Automotive Engi-neers, 2016, 38(10): 16–20.
[4]
Splitter D, Wissink M, Dan D V, et al. RCCI engine operation towards 60 % thermal efficiency [C]. SAE Paper 2013-01-0279, 2013.
[5]
苏万华. 内燃机燃烧与控制 [M]. 天津: 天津大学出版社, 2010.
[6]
臧儒振. 二元燃料着火与柴油甲醇燃烧排放的数值模拟研究[D]. 天津:天津大学(博士学位论文), 2016.
[7]
马帅营. 汽油/ 柴油双燃料高预混合低温燃烧技术应用基础研究 [D]. 天津: 天津大学(博士学位论文), 2013.
[8]
张帆, 尧命发. 直接数值模拟浓度和温度分层下庚烷的点火 [J]. 工程热物理学报, 2017 (1): 213–218.
[9]
祝俊. 燃油分层对新型二冲程汽油机SFI 燃烧的影响 [D]. 天津: 天津大学( 硕士学位论文), 2016.
[10]
赵霏阳, 于文斌, 裴毅强, 等. 柴油机高密度–低温燃烧过程参数对碳烟生成影响的模拟 [J]. 内燃机学报, 2014, 32(3): 193–201.
[11]
余浩, 邬斌扬, 朴有哲, 等. 基于进气门晚关和EGR 的协同作用在两种燃烧模式下对柴油机排放和热效率优化 [J]. 内燃机学报, 2013, 31(5): 385–392.
[12]
苏万华, 鹿盈盈, 于文斌, 等. 柴油机高密度–低温燃烧的数值模拟 [J]. 燃烧科学与技术, 2010, 16(3): 191–198.
[13]
邬斌扬. 柴油机先进空气系统理论及其在低温燃烧过程的应用研究 [D]. 天津: 天津大学(博士学位论文), 2014.
[14]
King J, Heaney M, Saward J, et al. HyBoost: An intelligently electrified optimised downsized gasoline engine concept [J]. Springer Berlin Heidelberg , 2013 (191): 189–201.
[15]
韩伟强. 电动增压器降低增压柴油机瞬态烟度研究 [D]. 天津: 天津大学(博士学位论文), 2012.
[16]
刘瑞林, 林春城, 董素荣, 等. 柴油机二级可调增压系统高海拔标定试验 [J]. 内燃机学报, 2016, 34(6): 543–548.
[17]
Liu R L, Zhang Z J, Dong S R, et al. High-altitude matching char-acteristic of regulated two-stage turbocharger with diesel engine [J]. Journal of Engineering for Gas Turbines Power, 2017, 139(9): 1–13.
[18]
尹胧. 柴油机可变气门系统设计与仿真研究 [D]. 成都: 西华大学(硕士学位论文), 2014.
[19]
Demmel bauer-Ebner W, Persigehl K, Gorke M, 等. Volkwagen新型4 缸1.5L-TSI 增压直喷式汽油机 [J]. 国外内燃机 , 2017, 49(5): 30–34.
[20]
韩志强, 邱鹏, 钱云寿, 等. 进气门晚关机构与两级增压系统在低速工况的优化匹配 [J]. 燃烧科学与技术, 2017 (5): 398–405.
[21]
Yamada T, Adachi S, Nakata K, 等. 高热效率的低燃油耗技术ESTEC [J]. 国外内燃机, 2015, 47(2): 9–13.
[22]
陈礼勇, 周小波, 邬斌扬, 等. 高压共轨柴油机随机停缸策略的试验研究 [J]. 内燃机工程, 2016, 37(5): 205–210.
[23]
Phillips F, Gilbert I, Pirault J, et al. Scuderi split cycle research engine: Overview, architecture and operation [C]. SAE Paper 2011-01-0403, 2011.
[24]
Meldolesi R, Badain N. Scuderi split cycle engine: Air hybrid ve-hicle powertrain simulation study [C]. SAE Paper 2012-01-1013, 2012.
[25]
Meldolesi R, Bailey G, Lacy C, et al. Scuderi split cycle fast acting valvetrain: Architecture and development [C]. SAE Paper 2011-01-0404, 2011.
[26]
Dean C. Split-cycle internal combustion engine [P]. Patent No: U.S.8267056B2, 2012.
[27]
卢勇. 新型循环内燃机工质移缸和喷水做功节能原理与应用基础 [D]. 北京: 清华大学(博士学位论文), 2014.
[28]
左子农, 曾东建, 麦华志, 等. 不同辛烷值汽油对增压直喷汽油机影响的研究 [J]. 西华大学学报(自然科学版), 2014, 33(1): 72–78.
[29]
Tatur M, Nanjundaswamy H, Tomazic D, et al. Biodiesel effects on engine and emission control systems [J]. Mtz Worldwide, 2009, 70(1): 20–30.
[30]
林章磊, 闫峰, 余浩, 等. 高温无氧重整与重整燃料可用能 [J]. 内燃机学报, 2017, 35(2): 97–103.
[31]
刘威威. RM-HCCI 燃烧的燃料重整研究 [D]. 天津: 天津大学(硕士学位论文), 2014.
基金
中国工程院咨询项目“汽车强国战略研究”(2015-XZ-36)
PDF(1831 KB)

Accesses

Citation

Detail

段落导航
相关文章

/