
柔性太阳电池发展研究
Research on the Development of Flexible Solar Cells
柔性太阳电池可应用在卫星、飞艇、无人机、单兵装备、光伏建筑一体化以及可穿戴智能设备上,极具发展前景。本文介绍了柔性硅薄膜太阳电池、柔性碲化镉太阳电池、柔性铜铟镓硒太阳电池和柔性钙钛矿太阳电池的电池结构、制备方法和发展现状,分析了柔性太阳电池效率提升以及产业化过程中存在的问题,并从柔性衬底选择、电池效率提升、产业化装备制造等几个方面,对柔性太阳电池下一步发展提出了建议。
Flexible solar cells could be applied in fields such as satellites, airships, drones, individual soldier equipment, building integrated photovoltaics (BIPV), and wearable smart devices, which indicates great prospects. This paper introduces cell structures, fabrication methods and current statuses of four types of flexible solar cells respectively, including the flexible silicon thin film solar cell, the flexible CdTe solar cell, the flexible CIGS solar cell, and the flexible perovskite solar cell. This paper also analyses the key issue of efficiency improvement and the main problems in the industrialization of the flexible solar cells. Ultimately, the paper proposes suggestions from aspects of substrate development, efficiency improvement and industrial fabrication.
柔性太阳电池 / 硅薄膜 / 铜铟镓硒 / 碲化镉 / 钙钛矿
flexible solar cell / silicon thin film / CIGS / CdTe / perovskite
[1] |
Pagliaro M, Ciriminna R, Palmisano G. Flexible solar cells [J]. ChemSusChem, 2008, 1(11): 880–891.
|
[2] |
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. Journal of the American Chemical Society, 2009, 131(17): 6050–6051.
|
[3] |
Yan B, Yue G, Sivec L, et al. Innovative dual function nc-SiOx:H layer leading to a >16 % efficient multi-junction thin-film silicon solar cell [J]. Applied Physics Letters, 2011, 99(11): 860.
|
[4] |
Yan B, Yang J, Guha S. Amorphous and nanocrystalline silicon thin film photovoltaic technology on flexible substrates [J]. Journal of Vacuum Science & Technology a Vacuum Surfaces & Films, 2012, 30(4):04D108-104D108-110.
|
[5] |
Banerjee A, Liu F S, Beglau D, et al. 12.0 % efficiency on large-area, encapsulated, multijunction nc-Si:H-Based solar cells [J]. IEEE Journal of Photovoltaics, 2012, 2(2): 104–108.
|
[6] |
中国科学院. 中国学科发展战略 · 光化学 [M]. 北京: 科学出版社, 2018.
|
[7] |
Haug F J, Söderström T, Python M, et al. Development of micromorph tandem solar cells on flexible low-cost plastic substrates [J]. Solar Energy Materials & Solar Cells, 2009, 93(6–7): 884–887.
|
[8] |
Soderstrom T, Haug F J, Terrazzoni-Daudrix V, et al. Optimization of amorphous silicon thin film solar cells for flexible photovoltaics [J]. Journal of Applied Physics, 2008, 103(11): 27–33.
|
[9] |
Marins E, Warzecha M, Michard S, et al. Flexible n-i-p thin film silicon solar cells on polyimide foils with textured ZnO:Ga back reflector [J]. Thin Solid Films, 2014, 571(A): 9–12.
|
[10] |
Liu Y, Rath J K, Schropp R E I. Development of micromorph tandem solar cells on foil deposited by VHF-PECVD [J]. Surface & Coatings Technology, 2007, 201: 9330–9333.
|
[11] |
Li H, Werf C H M V D, Borreman A, et al. Flexible a-Si:H/nc-Si:H tandem thin film silicon solar cells on plastic substrates with i -layers made by hot-wire CVD [J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2008, 2(4): 157–159.
|
[12] |
Fernández S, Santos J D, Munuera C, et al. Effect of argon plasma-treated polyethylene terepthalate on ZnO:Al properties for flexible thin film silicon solar cells applications [J]. Solar Energy Materials & Solar Cells, 2015, 133: 170–179.
|
[13] |
Başol B M, Kapur V K, Halani A, et al. Copper indium diselenide thin film solar cells fabricated on flexible foil substrates [J]. Solar Energy Materials & Solar Cells, 1993, 29(2): 163–173.
|
[14] |
Niki S, Contreras M, Repins I, et al. CIGS absorbers and processes 073中国工程科学 2018 年 第 20 卷 第 3 期[J]. Progress in Photovoltaics Research & Applications, 2010, 18(6): 453–466.
|
[15] |
Hartmann M, Schmidt M, Jasenek A, et al. Flexible and light weight substrates for Cu(In,Ga)Se/sub 2/ solar cells and modules [C]. IEEE Photovoltaic Specialists Conference, 2002: 638–641.
|
[16] |
Yagioka T, Nakada T. Cd-free flexible Cu(In,Ga)Se2 thin film solar cells with ZnS(O,OH) buffer layers on Ti foils [J]. Applied Physics Express, 2009, 2(7): 072201.
|
[17] |
Penndorf J, Winkler M, Tober O. CuInS2 thin film formation on a Cu tape substrate for photovoltaic applications [J]. Solar Energy Materials & Solar Cells, 1998, 53(3–4): 285–298.
|
[18] |
Contreras M A, Egaas B, Ramanathan K, et al. Progress toward 20 % efficiency in Cu (In, Ga) Se2 polycrystalline thin-film solar cells [J]. Progress in Photovoltaics: Research and applications, 1999, 7(4): 311–316.
|
[19] |
Pianezzi F, Chiril A, Blosch P, et al. Electronic properties of Cu(In,Ga)Se2 solar cells on stainless steel foils without diffusion barrier [J]. Progress in Photovoltaics Research & Applications, 2012, 20(3): 253–259.
|
[20] |
Kessler F, Herrmann D, Powalla M. Approaches to flexible CIGS thin-film solar cells [J]. Thin Solid Films, 2005, 480(3): 491–498.
|
[21] |
Chirilă A, Buecheler S, Pianezzi F, et al. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films [J]. Nature Materials, 2011, 10(11): 857–861.
|
[22] |
Hodges D R. Development of CdTe thin film solar cells on flexible foil substrates [D]. Florida: University of South Florida (Doctoral dissertation), 2009.
|
[23] |
Ferekides C S, Balasubramanian U, Mamazza R, et al. CdTe thin film solar cells: Device and technology issues [J]. Solar Energy, 2004, 77(6): 823–830.
|
[24] |
肖立新, 邹德春. 钙钛矿太阳能电池 [M]. 北京: 北京大学出版社, 2016.
|
[25] |
Feng J, Yang Z, Yang D, et al. E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells [J]. Nano Energy, 2017, 36: 1–8.
|
[26] |
Giacomo F D, Zardetto V, D’Epifanio A, et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates [J]. Advanced Energy Materials, 2015, 5(8): 1–9.
|
[27] |
Kim B J, Dong H K, Lee Y Y, et al. Highly efficient and bending durable perovskite solar cells: Toward a wearable power source [J]. Energy & Environmental Science, 2015, 8(3): 916–921.
|
[28] |
Yang D, Yang R, Zhang J, et al. High efficiency flexible perovskite solar cells using superior low temperature TiO2 [J]. Energy & Environmental Science, 2015, 8(11): 3208–3214.
|
[29] |
Yang D, Yang R, Ren X, et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport [J]. Advanced Materials, 2016, 28(26): 5206–5213.
|
[30] |
Wang C, Guan L, Zhao D, et al. Water vapor treatment of low-temperature deposited SnO2 electron selective layers for efficient flexible perovskite solar cells [J]. Acs Energy Letters, 2017, 2(9): 2118–2124.
|
[31] |
Roldáncarmona C, Malinkiewicz O, Soriano A, et al. Flexible high efficiency perovskite solar cells [J]. Energy & Environmental Science, 2014, 7(3): 994–997.
|
[32] |
Docampo P, Ball J M, Darwich M, et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates [J]. Nature Communications, 2013, 4(7): 2761.
|
[33] |
You J, Hong Z, Yang Y M, et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility [J]. Acs Nano, 2014, 8(2): 1674.
|
[34] |
Lee M, Jo Y, Kim D, et al. Flexible organo-metal halide perovskite solar cells on a Ti metal substrate [J]. Journal of Materials Chemistry A, 2015, 3(8): 4129–4133.
|
[35] |
Troughton J, Bryant D, Wojciechowski K, et al. Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates [J]. Journal of Materials Chemistry A, 2015, 3(17): 9141–9145.
|
[36] |
Wang X, Li Z, Xu W, et al. TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode [J]. Nano Energy, 2015, 11: 728–735.
|
[37] |
Qiu L B, Deng J, Lu X, et al. Integrating perovskite solar cells into a flexible fiber [J]. Angewandte Chemie, 2014, 53(39): 10425–10428.
|
/
〈 |
|
〉 |