
微水头资源开发与发电装置研究现状及趋势
Research Status and Trends of Ultra-Low-Head Water Resources and Hydro-Turbines
我国水能资源丰富,开发水力发电技术是增加可再生能源供应、优化能源结构、缓解环境问题的优先选择。本文着眼于我国丰富的微水头资源,梳理河流、运河、水库、电厂尾水、管道供水、城市废水、海洋新能源等微水头资源需求和应用特点,总结适合开阔流域和封闭流域特点的两型微水头水力发电水轮机,对形成动势能结合型微水头水轮机设计方法和研究其流动特征和机理提供基础。介绍了微水头资源评估和水力发电水轮机研究的趋势,并对今后研究方向提出了建议。
China is rich in hydropower resources, and hydropower technology development is the first choice to increase the supply of renewable energy, optimize the energy structure, and alleviate environmental problems. This paper focuses on rich microhead resources in China and presents the demand and application characteristics of microhead resources such as rivers, canals, reservoirs, power plant tailings, piped water supply, municipal wastewater, and marine energy. The paper summarizes two types of microhead hydro-turbines suitable for open and closed watersheds, which provide a basis for the design method of microhead hydro-turbines and the study of their flow characteristics and mechanism. This paper introduces the research trend of microhead resource evaluation and hydropower turbines. In addition, some suggestions for future research are put forward.
ultra-low-head water resources / hydro-turbines / open watershed / closed watershed
[1] |
中华人民共和国国家发展和改革委员会 . 可再生能源发展“十三五”规划 [J]. 太阳能, 2017 (1): 78.
|
[2] |
赵永平. 小水电多了还是少了? [N]. 人民日报, 2016-01-06(16).
|
[3] |
Zhou D, Deng Z. Ultra-low-head hydroelectric technology: A review [J]. Renewable & Sustainable Energy Reviews, 2017, 78: 23–30.
|
[4] |
Khan M J, Iqbal M T, Quaicoe J E. River current energy conver-sion systems: Progress, prospects and challenges [J]. Renewable & Sustainable Energy Reviews, 2008, 12(8): 2177–2193.
|
[5] |
Jacobson P T, Ravens T M, Cunningham K W, et al. Assessment and mapping of the riverine hydrokinetic resource in the continen-tal United States [R]. Office of Scientific & Technical Information Technical Reports, 2012.
|
[6] |
Ladokun L L, Ajao K R, Sule B F. Hydrokinetic energy conversion systems: Prospects and challenges in Nigerian hydrological setting [J]. Nigerian Journal of Technology, 2013, 32: 538–549.
|
[7] |
Colby J A, Adonizio M A, Power P. Hydrodynamic analysis of kinetic hydropower arrays [R]. Waterpower XVI, 2009.
|
[8] |
Wang L, Lee D J, Liu J H, et al. Installation and practical opera-tion of the first micro hydro power system in Taiwan using irriga-tion water in an agriculture canal [C]. Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the Century, IEEE, 2008.
|
[9] |
Smits M. Technography of pico-hydropower in the Lao PDR [R]. Lao Institute for Renewable Energy Lire, 2008.
|
[10] |
Zhou D, Chen H, Yang C. A highly efficient Francis turbine de-signed for energy recovery in cooling towers [J]. Advances in Me-chanical Engineering, 2015, 7(3): 1–8.
|
[11] |
Zheng Y, Zhang F, Liu D. Small turbine unit replacing reducing valve in water supply systems of hydropower plants [C]. ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meet-ing Collocated with the 14th International Conference on Nuclear Engineering, 2006.
|
[12] |
Adhikary P. Energy recovery in existing infrastructures with small hydropower plants [R]. Gcre, 2016.
|
[13] |
Liu Y, Packey D J. Combined-cycle hydropower systems: The potential of applying hydrokinetic turbines in the tailwaters of existing conventional hydropower stations [J]. Renewable Energy, 2014, 66(6): 228–231.
|
[14] |
Arango M A. Resource assessment and feasibility study for use of hydrokinetic turbines in the tailwaters of the priest rapids project [D]. Washington DC: University of Washington (Doctoral disser-tation), 2011.
|
[15] |
Jose D, Varghese L, Renjini G. Design of small hydro electric project using tailrace extension scheme [J]. International Journal of Advanced Research in Electrical, Electronics and Instrumenta-tion Engineering, 2014, 3(1): 79–87.
|
[16] |
Fraenkel P L. Marine current turbines: Pioneering the development of marine kinetic energy converters [J]. Journal of Power & Ener-gy, 2007, 221(2): 159–169.
|
[17] |
Thresher R, Musial W. Ocean renewable energy’s potential role in supplying future electrical energy needs [J]. Oceanography, 2010, 23(2): 1–6.
|
[18] |
Quesada M C C, Lafuente J G, Garrido J C S, et al. Energy of marine currents in the Strait of Gibraltar and its potential as a renewable energy resource [J]. Renewable & Sustainable Energy Reviews, 2014, 34: 98–109.
|
[19] |
Wang S, Yuan P, Li D, et al. An overview of ocean renewable ener-gy in China [J]. Renewable & Sustainable Energy Reviews, 2011, 15(1): 91–111.
|
[20] |
Williamson S J, Stark B H, Booker J D. Low head pico hydro turbine selection using a multi-criteria analysis [J]. Renewable En-ergy, 2014, 61(1): 43–50.
|
[21] |
王正伟, 杨校生, 肖业祥. 新型双向潮汐发电水轮机组性能优化设计 [J]. 排灌机械工程学报, 2010, 28(5): 417–421.
|
[22] |
杨春霞, 郑源, 郑璐, 等. 超低水头竖井贯流式水轮机转轮数值模拟优化 [J]. 排灌机械工程学报, 2013, 31(3): 225–229.
|
[23] |
Sinagra M, Sammartano V, Aricò C, et al. Cross-flow turbine de-sign for variable operating conditions [J]. Procedia Engineering, 2014, 70(70): 1539–1548.
|
[24] |
Hogan T W, Cada G F, Amaral S V. The status of environmentally enhanced hydropower turbines [J]. Fisheries, 2014, 39(4): 164–172.
|
[25] |
Ak M, Kentel E, Kucukali S. A fuzzy logic tool to evaluate low-head hydropower technologies at the outlet of wastewater treat-ment plants [J]. Renewable & Sustainable Energy Reviews, 2017, 68: 727–737.
|
[26] |
韩凤琴, 金元敏明. 正反转双转轮水轮机水力性能研究 [J]. 水电能源科学, 2006, 24(5): 37–39.
|
[27] |
Beels C, Troch P, Visch K D, et al. Application of the time-depen-095中国工程科学 2018 年 第 20 卷 第 3 期dent mild-slope equations for the simulation of wake effects in the lee of a farm of Wave Dragon wave energy converters [J]. Renew-able Energy, 2010, 35(8): 1644–1661.
|
[28] |
Müller N, Kouro S, Glaría J, et al. Medium-voltage power con-verter interface for Wave Dragon wave energy conversion system [C]. Denver: IEEE Energy Conversion Congress and Exposition, 2013.
|
[29] |
Golecha K, Eldho T I, Prabhu S V. Influence of the deflector plate on the performance of modified Savonius water turbine [J]. Ap-plied Energy, 2011, 88(9): 3207–3217.
|
[30] |
King J, Tryfonas T. Tidal stream power technology-State of the art [C]. Oceans, IEEE, 2009.
|
[31] |
张亮, 李新仲, 耿敬, 等. 潮流能研究现状2013 [J]. 新能源进展, 2013, 1(1): 53–68.
|
[32] |
陈展, 马勇, 张亮, 等. 矩形潮流能水轮机性能研究 [J]. 华中科技大学学报( 自然科学版), 2013, 41(6): 128–132.
|
/
〈 |
|
〉 |