量子通信的前沿、理论与实践

王向斌

中国工程科学 ›› 2018, Vol. 20 ›› Issue (6) : 87-92.

PDF(342 KB)
PDF(342 KB)
中国工程科学 ›› 2018, Vol. 20 ›› Issue (6) : 87-92. DOI: 10.15302/J-SSCAE-2018.06.014
专题研究

量子通信的前沿、理论与实践

作者信息 +

The Front, Theory and Practice of Quantum Communication

Author information +
History +

摘要

量子通信是量子信息科学的重要分支,其中最重要的两个应用是量子密钥分发和量子隐形传态。量子密钥分发可为通信双方提供无条件安全的密钥分发方式,其理论安全性由量子力学规律保证。量子密钥分发因其无条件安全的特点受到广泛关注。本文通过对量子密钥分发的广泛调研,系统地介绍了量子密钥分发的主要内容、理论安全性证明现状和实际安全性证明现状,着重介绍了诱骗态方法和测量装置无关的量子密钥分发方案;同时针对量子密钥分发在信道衰减严重时面临的问题做了系统调研,介绍了目前学术界对该问题的主流解决方法,即量子中继或卫星中继;最后指出量子密钥分发已经由理论模型发展到实际系统,为后续开展量子密钥分发相关研究提供了有益参考。

Abstract

Quantum communication is an important branch of quantum information, where the two most important applications are quantum key distribution (QKD) and quantum teleportation. QKD can provide unconditionally secure key distribution methods between two remotely separated parties, and its information theoretical security is guaranteed by the laws of quantum mechanics. QKD has received much attention due to its unconditional security. Through extensive research on QKD, this paper systematically introduces the main content of QKD, the status of theoretical security proof and real-life security proof, and mainly focuses on the decoy state method and measurement-device-independent QKD. Besides, this paper systematically investigates the problems faced by QKD in the case of severe channel attenuation, and introduces the mainstream solution to the problem, i.e., quantum repeaters or satellite relay. This paper points out that the QKD has been developed from the theoretical model to the actual system, and provides a useful guidance for the subsequent research on QKD.

关键词

量子密钥分发 / 无条件安全性 / 现实条件安全性 / 纠缠分发 / 量子中继

Keywords

quantum key distribution / unconditional security / practical security / entanglement distribution / quantum repeaters

引用本文

导出引用
王向斌. 量子通信的前沿、理论与实践. 中国工程科学. 2018, 20(6): 87-92 https://doi.org/10.15302/J-SSCAE-2018.06.014

参考文献

[1]
苏晓琴, 郭光灿. 两种典型的量子通信技术 [J]. 广西大学学报 (自然科学版), 2005, 30(1): 30–39. Su X Q, Guo G C. Two typical quantum communication technology [J]. Journal of Guangxi University (Natural Science Edition), 2005, 30(1): 30–39.
[2]
Yao A C C. Quantum circuit complexity[C]. Palo Alto: IEEE 34th Annual Foundations of Computer Science, 1993.
[3]
Yuan Z S, Bao X H, Lu C Y, et al. Entangled photons and quantum communication [J]. Physics Reports, 2010, 497(1): 1–40.
[4]
Ursin R, Tiefenbacher F, Schmitt-Manderbach T, et al. Entanglementbased quantum communication over 144 km [J]. Nature Physics, 2007, 3(7): 481–486.
[5]
Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing [C]. Bangalore: IEEE International Conference on Computers, Systems and Signal Processing, 1984.
[6]
Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances [J]. Science, 1999, 283(5410): 2050–2056.
[7]
Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol [J]. Physical Review Letters, 2000, 85(2): 441–444.
[8]
Mayers D. Unconditional security in quantum cryptography [J]. Journal of the ACM (JACM), 2001, 48(3): 351–406.
[9]
Brassard G, Lütkenhaus N, Mor T, et al. Limitations on practical quantum cryptography [J]. Physical Review Letters, 2000, 85(6): 1330–1333.
[10]
Lydersen L, Wiechers C, Wittmann C, et al. Hacking commercial quantum cryptography systems by tailored bright illumination [J]. Nature Photonics, 2010, 4(10): 686–689.
[11]
Hwang W Y. Quantum key distribution with high loss: Toward global secure communication [J]. Physical Review Letters, 2003, 91(5): 057901.
[12]
Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography [J]. Physical Review Letters, 2005, 94(23): 230503.
[13]
Lo H K, Ma X, Chen K. Decoy state quantum key distribution [J]. Physical Review Letters, 2005, 94(23): 230504.
[14]
Peng C Z, Zhang J, Yang D, et al. Experimental long-distance decoy-state quantum key distribution based on polarization encoding [J]. Physical Review Letters, 2007, 98(1): 010505.
[15]
Rosenberg D, Harrington J W, Rice P R, et al. Long-distance decoy-state quantum key distribution in optical fiber [J]. Physical Review Letters, 2007, 98(1): 010503.
[16]
Schmitt-Manderbach T, Weier H, Fürst M, et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km [J]. Physical Review Letters, 2007, 98(1): 010504.
[17]
Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution [J]. Physical Review Letters, 2012, 108(13): 130503.
[18]
Liu Y, Chen T Y, Wang L J, et al. Experimental measurementdevice-independent quantum key distribution [J]. Physical Review Letters, 2013, 111(13): 130502.
[19]
Tang Y L, Yin H L, Chen S J, et al. Measurement-deviceindependent quantum key distribution over 200 km [J]. Physical Review Letters, 2014, 113(19): 190501.
[20]
Zhou Y H, Yu Z W, Wang X B. Making the decoy-state measurement-device-independent quantum key distribution practically useful [J]. Physical Review A, 2016, 93(4): 042324.
[21]
Yin H L, Chen T Y, Yu Z W, et al. Measurement-deviceindependent quantum key distribution over a 404 km optical fiber [J]. Physical Review Letters, 2016, 117(19): 190501.
[22]
Ekert A K. Quantum cryptography based on Bell’s theorem [J]. Physical Review Letters, 1991, 67(6): 661–663.
[23]
Gerhardt I, Liu Q, Lamaslinares A, et al. Experimentally faking the violation of Bell’s inequalities [J]. Physical Review Letters, 2011, 107(17): 170404.
[24]
Mayers D, Yao A. Quantum cryptography with imperfect apparatus [C]. Palo Alto: IEEE Symposium on Foundations of Computer Science, 1998.
[25]
Vazirani U, Vidick T. Fully device-independent quantum key distribution [J]. Physical Review Letters, 2014, 113(14): 140501.
[26]
Yang S J, Wang X J, Bao X H, et al. An efficient quantum light– matter interface with sub-second lifetime [J]. Nature Photonics, 2016, 10(6): 381–384.
[27]
Liao S K, Yong H L, Liu C, et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication [J]. Nature Photonics, 2017, 11(8): 509–513.
[28]
Chen T Y, Liang H, Liu Y, et al. Field test of a practical secure communication network with decoy-state quantum cryptography [J]. Optics Express, 2009, 17(8): 6540–6549.
[29]
Chen T Y, Wang J, Liang H, et al. Metropolitan all-pass and intercity quantum communication network [J]. Optics Express, 2010, 18(26): 27217–27225.
[30]
Liao S K, Cai W Q, Liu W Y, et al. Satellite-to-ground quantum key distribution [J]. Nature, 2017, 549(7670): 43–47.
[31]
Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers [J]. Science, 2017, 356(6343): 1140–1144.
[32]
Ren J G, Xu P, Yong H L, et al. Ground-to-satellite quantum teleportation [J]. Nature, 2017, 549(7670): 70–73.
基金
中国工程院咨询项目“工程科技颠覆性技术战略研究”(2017-ZD-10)
PDF(342 KB)

Accesses

Citation

Detail

段落导航
相关文章

/