基于悬浮光力学的惯性传感颠覆性技术

胡慧珠, 尹璋琦, 李楠, 车双良, 舒晓武, 刘承

中国工程科学 ›› 2018, Vol. 20 ›› Issue (6) : 112-116.

PDF(1615 KB)
PDF(1615 KB)
中国工程科学 ›› 2018, Vol. 20 ›› Issue (6) : 112-116. DOI: 10.15302/J-SSCAE-2018.06.018
专题研究

基于悬浮光力学的惯性传感颠覆性技术

作者信息 +

Inertial Sensing Disruptive Technology Based on Levitated Optomechanics

Author information +
History +

摘要

悬浮光力学是光力学与量子光学结合的产物,为微纳机械振子的控制和测量提供了一种全新的量子方法,这种方法具有前所未有的观测精度,可接近甚至突破标准量子极限,具有广阔的发展和应用前景。目前国际上已在室温下利用此系统实现了力、力矩、位移、加速度等多个物理量的极高灵敏度测量。本文综述了悬浮光力学的研究现状及国内外在精密传感与测量方面的进展。作为近年来发展起来的一种前沿技术,悬浮光力学已逐渐从基础研究走向应用,特别是对惯性传感与精密测量领域有重要的应用前景。最后提出了发展基于悬浮光力学的惯性传感颠覆性技术的建议,为我国惯性传感与量子精密测量技术发展规划的制定提供参考。

Abstract

Levitated optomechanics is the combination of optomechanics and quantum optics. It provides a new quantum method to control and measure micro-nano mechanical oscillator. This method has unprecedented observation accuracy, can approach or even break the standard quantum limit, and has broad development and application prospects. At present, the system has been used to measure the force, torque, displacement, acceleration and other physical parameters with high sensitivity at room temperature. In this paper, the research status of levitated optomechanics and its progress in precision sensing and measurement are reviewed. As a frontier technology developed in recent years, levitated optomechanics has gradually moved from basic research to application, especially in the field of inertial sensing and precision measurement. Finally, suggestions for developing the inertial sensing disruptive technology based on levitated optomechanics are put forward, which can provide reference for the development planning of inertial sensing and quantum precision measurement technology.

关键词

光力学 / 精密测量 / 惯性传感 / 颠覆性技术

Keywords

optomechanics / precision measurement / inertial sensing / disruptive technology

引用本文

导出引用
胡慧珠, 尹璋琦, 李楠. 基于悬浮光力学的惯性传感颠覆性技术. 中国工程科学. 2018, 20(6): 112-116 https://doi.org/10.15302/J-SSCAE-2018.06.018

参考文献

[1]
Ashkin A, Dziedzic J M. Optical levitation by radiation pressure [J]. Applied Physics Letters, 1971, 19(8): 283–285.
[2]
Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles [J]. Optics Letters, 1986, 11(5): 288–290.
[3]
Romero-Isart O, Juan M L, Quidant R, et al. Toward quantum superposition of living organisms [J]. New Journal of Physics, 2009, 12(3): 033015.
[4]
Chang D E, Regal C A, Papp S B, et al. Cavity opto-mechanics using an optically levitated nanosphere [J]. The National Academy of Sciences of the United States of America, 2010, 107(3): 1005– 1010.
[5]
Li T C, Kheifets S, Medellin D, et al. Measurement of the instantaneous velocity of a Brownian particle [J]. Science, 2010, 328 (5986): 1673–1675.
[6]
Li T. Millikelvin cooling of an optically trapped microsphere in vacuum [M]. New York: Springer, 2013.
[7]
Jain V, Gieseler J, Moritz C, et al. Direct measurement of photon recoil from a levitated nanoparticle [J]. Physical Review Letters, 2016, 116(24): 243601.
[8]
Romero-Isart O, Pflanzer A C, Blaser F, et al. Large quantum superpositions and interference of massive nanometer-sized objects [J]. Physical Review Letters, 2011, 107(2): 020405.
[9]
Yin Z Q, Li T C, Zhang X, et al. Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling [J]. Physical Review A, 2013, 88(3): 033614.
[10]
Robicheaux F. Comment on “matter-wave interferometry of a levitated thermal nano-oscillator induced and probed by a spin” [J]. Physical Review Letters, 2013, 111(18): 180403.
[11]
Hoang T M, Ahn J, Bang J, et al. Electron spin control of optically levitated nanodiamonds in vacuum [J]. Nature Communications, 2016, 7: 12250.
[12]
Rahman A T M A, Barker P F. Laser refrigeration, alignment and rotation of levitated Yb 3+ : YLF nanocrystals [J]. Nature Photonics, 2017, 11(10): 634–638.
[13]
Kaltenbaek R, Kiesel N, Romero-Isart O, et al. Macroscopic quantum resonators (MAQRO) [J]. Experimental Astronomy, 2012, 34(2): 123–164.
[14]
Millen J, Deesuwan T, Barker P, et al. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere [J]. Nature Nanotechnology, 2014, 9(6): 425–429.
[15]
Hoang T M, Pan R, Ahn J, et al. Experimental test of the differential fluctuation theorem and a generalized jarzynski equality for arbitrary initial states [J]. Physical Review Letters, 2018, 120(8): 080602.
[16]
Bang J, Pan R, Hoang T M, et al. Experimental realization of Feynman’s ratchet [J]. New Journal of Physics, 2018, 20: 103032.
[17]
Ranjit G, Cunningham M, Casey K, et al. Zeptonewton force sensing with nanospheres in an optical lattice [J]. Physical Review A, 2016, 93(5): 053801.
[18]
Xu Z, Li T. Detecting Casimir torque with an optically levitated nanorod [J]. Physical Review A, 2017, 96(3): 033843.
[19]
Monteiro F, Ghosh S, Fine A G, et al. Optical levitation of 10-ng spheres with nano-g, acceleration sensitivity [J]. Physical Review A, 2017, 96(6): 063841.
[20]
Shen Y, Wang J Z, Luo J Y, et al. Theory and simulation of accelerometer based on laser trap [J]. Infrared and Laser Engineering, 2010, 39(3): 543–548.
[21]
Fu Z H, She X, Li N, et al. Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap [J]. Optics Communications, 2018 (417): 103–109.
[22]
Ge X J, Shen Y, Su H M, et al. Practical sensing chip based on optical trap [J]. Acta Photonica Sinica, 2018, 47(2): 0206001.
[23]
Li Z G, Shen Y, Hu H Z, et al. Simulation and measurement of stiffness for dual beam laser trap using residual gravity method [J]. International Journal of Nanotechnology, 2015, 12: 849–859.
[24]
Hoang T M, Ma Y, Ahn J, et al. Torsional optomechanics of a levitated nonspherical nanoparticle [J]. Physical Review Letters, 2016, 117(12): 123604.
[25]
Ahn J, Xu Z, Bang J, et al. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor [J]. Physical Review Letters, 2018, 121(3): 033603.
[26]
Yan X C, Qi Z Y. High-precision gravimeter based on a nanomechanical resonator hybrid with an electron spin, arXiv: 1807.05671 [quant-ph].
基金
中国工程院咨询项目“工程科技颠覆性技术战略研究”(2017-ZD-10);教育部联合基金(6141A02011604);中央高校基本科研业务费专项资金(2016XZZX00401)
PDF(1615 KB)

Accesses

Citation

Detail

段落导航
相关文章

/