
加速器驱动次临界系统装置部件用材发展战略研究
王志光, 姚存峰, 秦芝, 孙建荣, 庞立龙, 申铁龙, 朱亚滨, 崔明焕, 魏孔芳
中国工程科学 ›› 2019, Vol. 21 ›› Issue (1) : 39-48.
加速器驱动次临界系统装置部件用材发展战略研究
Materials for Components in Accelerator-driven Subcritical System
加速器驱动次临界系统(ADS)由强流高能离子加速器、高功率散裂靶和次临界反应堆三大分系统组成。作为未来先进核裂变能——加速器驱动先进核能系统(ADANES)的重要组成部分,ADS装置的研发对推动我国能源革命、促进能源转型以及刺激核能行业创新发展具有重大作用。本文以ADANES研发为背景,阐述了ADS装置的研发现状、可能的发展趋势以及ADS部件对材料的需求,重点探讨了ADS装置中高功率散裂靶和次临界反应堆部件用关键材料的研发进展与存在问题,面临的发展机遇和挑战,最后提出了几点发展对策,力求助力我国ADS装置的建设与先进核裂变能技术创新,推动未来先进核裂变能的安全高效和可持续发展。
Accelerator-driven subcritical system (ADS) mainly composes of a high beam intensity high-energy-ion accelerator, a high-power spallation target, and a subcritical reactor. ADS is a key part of the accelerator-driven advanced nuclear energy system (ADANES), and its research and development (R&D) will play a very important role in promoting China’s energy transformation and stimulating the innovative development of China’s nuclear energy industry. In this paper, the status and potential trends as well as materials requirements for the R&D of ADS facilities are introduced. Then the R&D progress and problems, development opportunities, and challenges of the key materials for the high-power spallation target and the subcritical reactor are intensively discussed. Finally, several countermeasures are proposed, in the hope of pushing forward the ADS facility construction and the technological innovation of advanced nuclear fission energy, and promoting safe, efficient, and sustainable development of advanced nuclear fission energy in the future.
加速器驱动次临界系统(ADS) / 加速器驱动先进核能系统(ADANES) / 关键材料 / 次临界反应堆 / 高功率散裂靶
accelerator-driven subcritical system (ADS) / accelerator-driven advanced nuclear energy system (ADANES) / key materials / subcritical reactor / high-power spallation target
[1] |
詹文龙,徐瑚珊. 未来先进核裂变能——ADS 嬗变系统 [J]. 中 国科学院院刊, 2012, 27(3): 375–381. Zhan W L, Xu H S. Advanced fission energy program — ADS transmutation system [J]. Journal of the Chinese Academy of Sciences, 2012, 27(3): 375–381.
|
[2] |
Xu H S, He Y, Luo P, et al. China’s accelerator driven sub-critical system (ADS) program [J]. Activities and Research News, 2015, 25(3): 30–35.
|
[3] |
Murty K L, Charit I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities [J]. Journal of Nuclear Materials, 2008, 383(1–2): 189–195.
|
[4] |
Yang L, Zhan W L. New concept for ADS spallation target: Gravity-driven dense granular flow target [J]. Science China, Technological Sciences, 2015, 58(10): 1705–1711.
|
[5] |
Organisation for Economic Co-operation and Development. Status report on structural materials for advanced nuclear systems [R]. Paris: Organisation for Economic Co-operation and Development, 2013.
|
[6] |
Bach H T, Anderoglu O, Saleh T A, et al. Proton irradiation damage of an annealed Alloy 718 beam window [J]. Journal of Nuclear Materials, 2015, 459: 103–113.
|
[7] |
李冠兴, 武胜. 核燃料 [M]. 北京: 化学工业出版社, 2007. Li G X, Wu S. Nuclear fuel [M]. Beijing: Chemical Industry Press, 2007.
|
[8] |
Davis T P. Review of the iron-based materials applicable for the fuel and core of future Sodium Fast Reactors (SFR) [R]. Research Project ONR-RRR-088, 2018.
|
[9] |
Boutard J L, Alamo A, Lindau R, et al. Fissile core and tritiumbreeding blanket: Structural materials and their requirements [J]. Comptes Rendus Physique, 2008, 9: 287–302.
|
[10] |
Zinkle S J, Ghoniem N M. Prospects for accelerated development of high performance structural materials [J]. Journal of Nuclear Materials, 2011, 417(1–2): 2–8.
|
[11] |
Zinkle S J, Busby J T. Structural materials for fission & fusion energy [J]. Materials Today, 2009, 12(11): 12–19.
|
[12] |
Garner F A. Void swelling and irradiation creep in light water reactor enviroments, radiation effects consulting [R]. USA: Woodhead Publishing Limited, 2010.
|
[13] |
Dai Y, Jia X, Thermer R, et al. The second SINQ target irradiation program, STIP-II [J]. Journal of Nuclear Materials, 2005, 343: 33–44.
|
[14] |
Zhang J, Li N. Review of studies on fundamental issues in LBE corrosion [R]. LANL/LA-UR-04-0869, 2004.
|
[15] |
Tian W, Guo H, Chen D, et al. Preparation of UC ceramic nuclear fuel microspheres by combination of an improved microwaveassisted rapid internal gelation with carbothermic reduction process [J]. Ceramics International, 2018, 44: 17945–17952.
|
[16] |
Klueh R L, Kai J J, Alexander D J. Microstructure- mechanical properties correlation of irradiated, conventional and reducedactivation martensitic steels [J]. Journal of Nuclear Materials, 1995, 225: 175–186.
|
[17] |
Stergar E, Eremin S G, Gavrilov S, et al. Influence of LBE long term exposure and simultaneous fast neutron irradiation on the mechanical properties of T91 and 316L [J]. Journal of Nuclear Materials, 2016, 473: 28–34.
|
/
〈 |
|
〉 |