
海洋桥梁工程轻质、高强、耐久性结构材料现状及发展趋势研究
Status Quo and Development Trend of Light-Weight, High-Strength, and Durable Structural Materials Applied in Marine Bridge Engineering
本文针对海洋环境下大跨桥梁突出的长期服役性能问题和轻量化需求,通过对轻质、高强、耐久的材料深入调研,总结了高性能钢、高性能混凝土及纤维增强复合材料的研究现状及发展趋势,介绍了上述材料在桥梁关键区域的针对性应用技术,并提出海洋桥梁工程轻质、高强、耐久材料发展的战略建议,以满足海洋桥梁工程高性能、长寿命、轻量化的需求,突破海洋环境下大跨桥梁的耐久和跨度瓶颈。
This paper focuses on the requirements of marine long-span bridges for durability and light-weight. It summarizes the research status and development tendency of high-performance steel, high-performance concrete, and fiber-reinforced polymer (FRP), after a thorough investigation on light-weight, high-strength, and durable materials. The application technologies of the aforementioned materials to key zones of bridges are introduced, and the strategic recommendations for the development of light-weight, highstrength, and durable structural materials in marine bridge engineering are proposed. The research results contribute to satisfying the requirements of marine bridge engineering for high performance, long life, and light weight, and overcoming the challenges in durability and span of long-span bridges in marine environment.
海洋环境 / 大跨桥梁 / 高性能钢 / 高性能混凝土 / 纤维增强复合材料
marine environment / long-span bridges / high-performance steel / high-performance concrete / fiber-reinforced polymer
[1] |
Mangat P S, Grigoriadis K, Abgbakrl S. Microwave curing parameters of in-situ concrete repairs [J]. Construction and Building Materials, 2016 (112): 856–866.
|
[2] |
郭小华, 于英俊, 王玲, 等. 工业环境混凝土结构耐久性修复研 究现状 [J]. 工业建筑, 2019, 49(1): 156–162. Guo X H, Yu Y J, Wang L, et al. Research status of durability repair of concrete structure in industry environment [J]. Industry Construction, 2019, 49(1): 156–162.
|
[3] |
黄维, 张志勤, 高真凤, 等. 国外高性能桥梁用钢的研发 [J]. 世 界桥梁, 2011 (2): 18–21. Huang W, Zhang Z Q, Gao Z F, et al. Research and development of high-performance steel used in bridge abroad [J]. World Bridges, 2011 (2): 18–21.
|
[4] |
姚昌荣, 李亚东, 强士中. 美国桥梁高性能钢的发展与应用 [J]. 世界桥梁, 2005 (1): 57–61. Yao C R, Li Y D, Qiang S Z. Development and applications of high-performance steel used in bridge in the USA [J]. World Bridges, 2005 (1): 57–61.
|
[5] |
Ohba H, Noshida S, Tarui T, et a1. High-performance wire rods produced with DLP [J]. Nippon Steel Technical Report, 2007, 96: 50–56.
|
[6] |
党玉栋, 钱觉时, 乔墩, 等. 减缩剂预饱和轻骨料对水泥砂浆自 收缩的影响及机理 [J]. 硅酸盐学报, 2011, 39(1): 47–53. Dang Y D, Qian J S, Qiao D, et al. Influence and mechanism of lightweight aggregates pre-saturated with shrinkage reducing admixtures on autogenous shrinkage of cement mortar [J]. Journal of the Chinese Ceramic Society, 2011, 39(1): 47–53.
|
[7] |
刘建忠. 超高性能水泥基复合材料制备技术及静态拉伸行为研 究 [D]. 南京: 东南大学 (博士学位论文), 2013. Liu J Z. Study on preparation technology and static, dynamic tensile behavior of ultra-high performance cementitious composites [D]. Nanjing: Southeast University (Doctoral dissertation), 2013.
|
[8] |
Wang X, Wu Z, Wu G, et al. Enhancement of basalt FRP by hybridization for long-span cable-stayed bridge [J]. Composites Part B: Engineering, 2013, 44(1): 184–192.
|
[9] |
Wang X, Shi J, Liu J, et al. Creep behavior of basalt fiber reinforced polymer tendons for prestressing application [J]. Materials & Design, 2014, 59(7): 558–564.
|
[10] |
Zhao X, Wang X, Wu Z, et al. Fatigue behavior and failure mechanism of basalt FRP composites under long-term cyclic loads [J]. International Journal of Fatigue, 2016, 88: 58–67.
|
[11] |
Wang X, Wu G, Wu Z, et al. Evaluation of prestressed basalt fiber and hybrid fiber reinforced polymer tendons under marine environment [J]. Materials & Design, 2014, 64: 721–728.
|
[12] |
国际桥梁与结构工程协会. 高性能钢材在钢结构中的应用 [M]. 北京: 中国建筑工业出版社, 2010. International Association for Bridge and Structural Engineering. Use and application of high-performance steels for steel structures [M]. Beijing: China Building Industry Press, 2010.
|
[13] |
Kazeminezhad M, Taheri A K. The effect of controlled cooling after hot rolling on the mechanical properties of a commercial high carbon steel wire rod [J]. Materials & Design, 2003, 24(6): 415–421.
|
[14] |
Wang X, Shi J, Wu G, et al. Effectiveness of basalt FRP tendons for strengthening of RC beams through the external prestressing technique [J]. Engineering Structures, 2015, 101: 34–44.
|
[15] |
刘长源. 预应力BFRP 板外贴加固RC 梁抗弯性能研究 [D]. 南 京: 东南大学 (硕士学位论文), 2019. Liu C Y. Study on the bending performance of steel reinforced concrete beams strengthened by prestressed and externally bonded BFRP plates [D]. Nanjing: Southeast University (Master’s thesis), 2019.
|
[16] |
孙沈鹏. BFRP 模壳— 混凝土组合桥面板基本性能研究 [D]. 南 京: 东南大学 (硕士学位论文), 2015. Sun S P. Research on fundamental behavior of BFRP formconcrete composite deck slab [D]. Nanjing: Southeast University (Master’s thesis), 2015.
|
[17] |
邓文杰. BFRP 模壳— 混凝土组合桥面板在长期荷载下的性能 研究 [D]. 南京: 东南大学 (硕士学位论文), 2017. Den W J. Mechanical behavior of BFRP shell-concrete composite bridge deck under long-term loads [D]. Nanjing: Southeast University (Master’s thesis), 2017.
|
[18] |
Wu Z S, Yamamoto M. Study on the basic performance of FRPconcrete structures using basalt fibre reinforced polymer rods [R]. Okayama: The 68th Annual Meeting of the Japan Society of Civil Engineers, 2013.
|
[19] |
Ibrahim A M A, Wu Z, Fahmy M F M, et al. Experimental study on cyclic response of concrete bridge columns reinforced by steel and basalt FRP reinforcements [J]. Journal of Composites for Construction, 2015, 20(3): 04015062.
|
[20] |
Yang Y, Wang X, Wu Z. Damping behavior of hybrid fiberreinforced polymer cable with self-damping for long-span bridges [J]. Journal of Bridge Engineering, 2017, 22(7): 05017005.
|
[21] |
Wang X, Xu P, Wu Z, et al. A novel anchor method for multitendon FRP cable: Concept and FE study [J]. Composite Structures, 2015, 120: 552–564.
|
[22] |
Wang X, Xu P, Wu Z, et al. A novel anchor method for multitendon FRP cable: Manufacturing and experimental study [J]. Journal of Composites for Construction, 2015, 19(6): 04015010.
|
/
〈 |
|
〉 |