
深海海洋生态系统与海洋生态保护区发展趋势
Development Trend of Deep-Sea Ecosystem and Marine Protected Areas
本文介绍了深海生态系统的类型及研究现状、面临的主要问题、关键需求及对策。与浅海生态系统相比,深海样品获取困难、已知数据少、研究程度较低。深海栖息着丰富多彩的生物群落,例如深海热泉中分布的具有特化营养体的管状蠕虫及极端嗜热古菌、冷泉区分布的硫酸盐还原菌共生的贻贝及蛤类、海山区域高度多样性的生物群落、捕食浮游生物的冷水珊瑚以及形态奇特的深渊狮子鱼,这些均迥异于其他生态环境,具有很高的生态研究价值。近年来,我国对深海资源的开发需求日益增强,深海探测技术迅速发展为深海生态系统的研究提供了契机,开展深海生物多样性研究并发展深海生态系统理论模型,成为迫在眉睫且切实可行的重要任务。为此,提出建立深海生物数据库、平衡深海资源利用与生态保护的关系、发展深海生态理论模型、加快管理对策和法律文书的制定等深海生态系统的保护对策建议。
The types, current situation, main problems, and technological needs of deep-sea ecosystems are described in this paper. Compared with those of shallow-sea ecosystems, samples of deep-sea ecosystems are more difficult to get, accumulated data is less, and the research degree is relatively limited. Diverse species dwell in deep sea, for example, the tubeworms and extemothermophilic archaea around the deep-sea hydrothermal vents, the mussels and clams that live on those sulfate reducing bacteria in the cold spring zone, the diverse species in the seamounts, the cold-water coral that capture the planktons, and the specialized sailfish in abyss. Those ecosystems are quite different from others and have high values for study. Recently, the rapid development of the deep-sea monitoring equipment and other detection devices provides a golden opportunity for studying the deep-sea ecosystems. The researches of the biodiversity and ecological theory for deep-sea ecosystems are urgent and practical. Therefore, strategies for protecting the deepsea ecosystem are proposed, including: to build a database of the deep-sea biology; to balance the deep-sea mineral exploring and ecosystem protection; to develop the theory model for deep-sea ecosystem; and to accelerate the formulation of management strategies and legal instruments.
biodiversity / deep-sea ecosystems / marine protected areas
[1] |
Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galapagos Rift [J]. Science, 1979, 203(4385): 1073–1083.
|
[2] |
Martin W, Baross J, Kelley D, et al. Hydrothermal vents and the origin of life [J]. Nature Reviews Microbiology, 2008, 6(11): 805–814.
|
[3] |
Weiss M C, Sousa F L, Mrnjavac N, et al. The physiology and habitat of the last universal common ancestor [J]. Nature Microbiology, 2016, 1(9): 16116.
|
[4] |
Desbruyères D, Segonzac M, Bright M. Handbook of deep-sea hydrothermal vent fauna second edition [M]. Linz: State Museum of Upper Austria, 2006.
|
[5] |
Miroshnichenko M L. Thermophilic microbial communities of deep-sea hydrothermal vents [J]. Microbiology, 2004, 73(1): 1–13.
|
[6] |
Cavanaugh C M, Wirsen C O, Jannasch H. Evidence for methylotrophic symbionts in a hydrothermal vent mussel (Bivalvia: Mytilidae) from the Mid-Atlantic Ridge [J]. Applied and Environmental Microbiology, 1992, 58(12): 3799–3803.
|
[7] |
Minic Z, Hervé G. Biochemical and enzymological aspects of the symbiosis between the deep-sea tubeworm Riftia pachyptila and its bacterial endosymbiont [J]. European Journal of Biochemistry, 2004, 271(15): 3093–3102.
|
[8] |
Kashefi K, Lovley D R. Extending the upper temperature limit for life [J]. Science, 2003, 301(5635): 934.
|
[9] |
Xie W, Wang F, Guo L, et al. Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries [J]. ISME Journal, 2011, 5(3): 414–426.
|
[10] |
Bourbonnais A, Juniper K, Butterfield D A, et al. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge [J]. Biogeosciences Discussions, 2012, 9(4): 4177–4223.
|
[11] |
王春生, 杨俊毅, 张东声, 等. 深海热液生物群落研究综述 [J]. 厦 门大学学报(自然科学版), 2006, 45(2): 141–149. Wang C S, Yang J Y, Zhang D S, et al. A review on deep-sea hydrothermal vent communities [J]. Journal of Xiamen University (Natural Science Edition), 2006, 45(2): 141–149.
|
[12] |
Sievert S M, Hügler M, Taylor C D, et al. Sulfur oxidation at deepsea hydrothermal vents [M]. Berlin: Springer, 2008.
|
[13] |
Logan G A, Jones A T, Kennard J M, et al. Australian offshore natural hydrocarbon seepage studies, a review and re-evaluation [J]. Marine and Petroleum Geology, 2010, 27(1): 26–45.
|
[14] |
Tryon M D, Brown K M. Complex flow patterns through Hydrate Ridge and their impact on seep biota [J]. Geophysical Research Letters, 2001, 28(14): 2863–2866.
|
[15] |
陈忠, 杨华平, 黄奇瑜, 等. 海底甲烷冷泉特征与冷泉生态系统 的群落结构 [J]. 热带海洋学报, 2007, 26(6): 73–82. Chen Z, Yang H P, Huang Q Y, et al. Characteristics of cold seeps and structures of chemoautosynthesis-based communities in seep sediments [J]. Journal of Tropical Oceanography, 2007, 26(6): 73–82.
|
[16] |
赵美霞, 余克服. 冷水珊瑚礁研究进展与评述 [J]. 热带地理, 2016, 36(1): 94–100. Zhao M X, Yu K F. A review of recent research on cold-water coral reefs [J]. Tropical Geography, 2016, 36(1): 94–100.
|
[17] |
张均龙, 徐奎栋. 海山生物多样性研究进展与展望 [J]. 地球科 学进展, 2013, 28(11): 1209–1216. Zhang J L, Xu K D. Progress and prospects in seamount biodiversity [J]. Advances in Earth Science, 2013, 28(11): 1209–1216.
|
[18] |
Genin A, Dayton P K, Lonsdale P F, et al. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography [J]. Nature, 1986, 322(6074): 59.
|
[19] |
Samadi S, Bottan L, Macpherson E, et al. Seamount endemism questioned by the geographic distribution and population genetic structure of marine invertebrates [J]. Marine Biology, 2006, 149(6): 1463–1475.
|
[20] |
de Forges B R, Koslow J A, Poore G. Diversity and endemism of the benthic seamount fauna in the Southwest Pacific [J]. Nature, 2000, 405(6789): 944.
|
[21] |
Genin A, Dower J F. Seamount plankton dynamics [M]. UK: Blackwell Publishing, 2007.
|
[22] |
Todo Y, Kitazato H, Hashimoto J, et al. Simple foraminifera flourish at the ocean’s deepest point [J]. Science, 2005, 307(5710): 689.
|
[23] |
Itoh M, Kawamura K, Kitahashi T, et al. Bathymetric patterns of meiofaunal abundance and biomass associated with the Kuril and Ryukyu trenches, western North Pacific Ocean [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2011, 58(1): 86–97.
|
[24] |
Fujii T, Kilgallen N M, Rowden A A, et al. Deep-sea amphipod community structure across abyssal to hadal depths in the Peru-Chile and Kermadec trenches [J]. Marine Ecology Progress Series, 2013, 492: 125–138.
|
[25] |
Danovaroa R, Gambia C, Croceb N D. Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean [J]. Deep-Sea Research I, 2002, 49: 843–857.
|
[26] |
Schmidt C, Arbizu P M. Unexpectedly higher metazoan meiofauna abundances in the Kuril-Kamchatka Trench compared to the adjacent abyssal plains [J]. Deep-Sea Research II, 2015, 111: 60–75.
|
[27] |
Jamieson A J, Lacey N C, Lorz A N, et al. The supergiant amphipod Alicella gigantea (Crustacea: Alicellidae) from hadal depths in the Kermadec Trench, SW Pacific Ocean [J]. Deep-Sea Research II, 2013, 92: 107–113.
|
[28] |
Wang K, Shen Y, Yang Y, et al. Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation [J]. Nature Ecology & Evolution, 2019, 3: 823–833.
|
[29] |
Devine J A, Baker K D, Haedrich R L. Fisheries: Deep-sea fishes qualify as endangered [J]. Nature, 2006, 439(7072): 29.
|
[30] |
Koslow J A. The silent deep: The discovery, ecology, and conservation of the deep sea [J]. Oceanography, 2007, 23(1): 228.
|
[31] |
Clark M R, Vinnichenko V I, Gordon J D, et al. Large-scale distant-water trawl fisheries on seamounts [J]. Seamounts: Ecology, Fisheries, and Conservation, 2007, 12: 361–399.
|
[32] |
Watson R, Kitchingman A, Cheung W W. Catches from world seamount fisheries [M]. UK: Blackwell Publishing, 2007.
|
[33] |
Baker K D, Devine J A, Haedrich R L. Deep-sea fishes in Canada’s Atlantic: Population declines and predicted recovery times [J]. Environmental Biology of Fishes, 2009, 85(1): 79.
|
[34] |
UNEP-WCMC, IUCN. 2018 United Nations list of protected areas. Supplement on protected area management effectiveness [R]. Cambridge: UNEP-WCMC, IUCN, 2018.
|
[35] |
Takahashi S, Tanabe S, Kubodera T. Butyltin residues in deep-sea organisms collected from Suruga Bay, Japan [J]. Environmental Science & Technology, 1997, 31(11): 3103–3109.
|
[36] |
Van Cauwenberghe L, Vanreusel A, Mees J, et al. Microplastic pollution in deep-sea sediments [J]. Environmental Pollution, 2013, 182: 495–499.
|
[37] |
Dasgupta S, Peng X T, Chen S, et al. Toxic anthropogenic pollutants reach the deepest ocean on Earth [J]. Geochemical Perspectives Letters, 2018 (7): 22–26.
|
[38] |
Sarmiento J L, Hughes T M, Stouffer R J, et al. Simulated response of the ocean carbon cycle to anthropogenic climate warming [J]. Nature, 1998, 393(6682): 245.
|
[39] |
Matear R, Hirst A. Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming [J]. Global Biogeochemical Cycles, 2003, 17(4): 1125.
|
[40] |
Shaffer G, Olsen S M, Pedersen J O P. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels [J]. Nature Geoscience, 2009, 2(2): 105.
|
[41] |
Whitney F A, Freeland H J, Robert M. Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific [J]. Progress in Oceanography, 2007, 75(2): 179–199.
|
[42] |
Wishner K, Levin L, Gowing M, et al. Involvement of the oxygen minimum in benthic zonation on a deep seamount [J]. Nature, 1990, 346(6279): 57.
|
[43] |
Gibson R, Atkinson R. Oxygen minimum zone benthos: Adaptation and community response to hypoxia [J]. Oceanography and Marine Biology, 2003, 41: 1–45.
|
[44] |
Stramma L, Schmidtko S, Levin L A, et al. Ocean oxygen minima expansions and their biological impacts [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(4): 587–595.
|
[45] |
Koslow J A, Auster P, Bergstad O A, et al. Biological communities on seamounts and other submarine features potentially threatened by disturbance [M]. New York: United Nations, 2016.
|
[46] |
Koslow J A, Goericke R, Lara-Lopez A, et al. Impact of declining intermediate-water oxygen on deepwater fishes in the California Current [J]. Marine Ecology Progress Series, 2011, 436: 207–218.
|
[47] |
Glover A G, Smith C R. The deep-sea floor ecosystem: Current status and prospects of anthropogenic change by the year 2025 [J]. Environmental Conservation, 2003, 30(3): 219–241.
|
[48] |
Clark M R, Rowden A A, Schlacher T, et al. The ecology of seamounts: Structure, function, and human impacts [J]. Annual Review of Marine Science, 2010, 2: 253–278.
|
[49] |
Leathwick J, Moilanen A, Francis M, et al. Novel methods for the design and evaluation of marine protected areas in offshore waters [J]. Conservation Letters, 2008, 1(2): 91–102.
|
[50] |
MacArthur R H, Wilson E O. An equilibrium theory of insular zoogeography [J]. Evolution, 1963, 17(4): 373–387.
|
[51] |
MacArthur R H, Wilson E O. The theory of island biogeography [M]. New Jersey: Princeton University Press, 1967.
|
/
〈 |
|
〉 |