
我国海岸带海岛礁遥感研究进展及建议
Remote Sensing Application in China's Coastal Zones and Islands: Recent Progress and Some Suggestions
为厘清我国海岸带海岛礁遥感近年来发展取得的成就以及存在的问题,本文摘选近十年来若干典型性研究,按照“近海陆域 –潮间带 –近海水域 –海岛礁”的空间顺序进行综述和探讨。总体而言,海岸带的土地覆盖、海岸线等仍是当前遥感应用研究的热点;同时,随着我国经济的快速发展和城镇化出现的环境问题,地面沉降、海水入侵、潮间带生态监测、海水养殖、赤潮、岛礁证据等新兴遥感应用方向也取得大幅进展,有效支撑了国家海洋战略。但同时也发现使用的遥感数据自主性不强、遥感信息更新频率低、学科孤立发展难以满足实际需求等问题。建议加强国产多源数据协同、多学科交叉以及大数据云平台支持下的大范围与局部高精度自动化、常态化监测等。
To summarize the recent achievements and problems of remote sensing application in China’s coastal zones and islands, this study reviews a quantity of typical studies selected from the last decade in a space order of “offshore land area–intertidal zone–offshore waters–island”. Classical remote sensing in land cover change and coastline dynamics is still the research hotspots. With China’s rapid economic development and urbanization, coastal environmental problems become serious. Remote sensing is increasingly applied into research on land subsidence, seawater intrusion, intertidal ecosystem monitoring, mariculture, red tide, and island reef sovereign evidence, which strongly supports China’s ocean strategies. However, the acquirement of remote sensing data still depends largely on foreign satellites; the update frequency of the remote sensing data is low; and different disciplines in this field are often isolated. We propose to promote fusion of multisource data and different disciplines, and ultimately realize high-precision, automatic, and regular monitoring supported by cloud computing at both national and regional levels.
遥感 / 海岸带管理 / 海洋战略 / 海岸线 / 海水养殖
remote sensing / coastal zone management / ocean strategy / coastline / mariculture
[1] |
苏奋振. 海岸带遥感评估 [M]. 北京: 科学出版社, 2015. Su F Z. Coastal remote sensing evaluation [M]. Beijing: China Science Publishing & Media Ltd., 2015.
|
[2] |
陈军. 海岸带环境遥感原理与应用 [M]. 北京: 海洋出版社, 2013. Chen J. The principle and application of the coastal environmental remote sensing [M]. Beijing: China Ocean Press, 2013.
|
[3] |
李清泉, 卢艺, 胡水波, 等. 海岸带地理环境遥感监测综述 [J]. 遥 感学报, 2016, 20(5): 1216–1229. Li Q Q, Lu Y, Hu S B, et al. Review of remotely sensed geoenvironmental monitoring of coastal zones [J]. Journal of Remote Sensing, 2016, 20(5): 1216–1229.
|
[4] |
Chen J, Ban Y F, Li S N. China: Open access to earth land-cover map [J]. Nature, 2014, 514(7523): 434.
|
[5] |
侯西勇, 邸向红, 侯婉. 中国海岸带土地利用遥感制图及精度评 价 [J]. 地球信息科学学报, 2018, 20(10): 1478–1488. Hou X Y, Di X H, Hou W, et al. Accuracy evaluation of land use mapping using remote sensing techniques in coastal zone of China [J]. Journal of Geoinformation Science, 2018, 20(10): 1478–1488.
|
[6] |
Wang Z H, Yang X M, Lu C, et al. A scale self-adapting segmentation approach and knowledge transfer for automatically updating land use/cover change databases using high spatial resolution images [J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 69: 88–98.
|
[7] |
Lu C, Yang X M, Wang Z H, et al. Using multi-level fusion of local features for land-use scene classification with high spatial resolution images in urban coastal zones [J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 70: 1–12.
|
[8] |
Hu L J, Li W Y, Xu B. Monitoring mangrove forest change in China from 1990 to 2015 using Landsat-derived spectral-temporal variability metrics [J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73: 88–98.
|
[9] |
Wang T, Zhang H S, Lin H, et al. Textural-spectral feature-based species classification of mangroves in mai po nature reserve from worldview-3 imagery [J]. Remote Sensing, 2016, 8(1): 1–15.
|
[10] |
Ren C Y, Wang Z M, Zhang Y Z, et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016 [J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 82: 1–12.
|
[11] |
Ge Y, Chen Y H, Jia Y X, et al. Dynamic monitoring the infrastructure of major ports in Sri Lanka [J]. Journal of Geographical Sciences, 2018, 28(7): 973–984.
|
[12] |
Higgins S, Overeem I, Tanaka A, et al. Land subsidence at aquaculture facilities in the Yellow River delta, China [J]. Geophysical Research Letters, 2013, 40(15): 3898–3902.
|
[13] |
高义, 王辉, 苏奋振, 等. 中国大陆海岸线近30a的时空变化分析 [J]. 海洋学报, 2013, 35(6): 31–42. Gao Y, Wang H, Su F Z, et al. Spatial and temporal of continental coastline of China in recent three decades [J]. Acta Oceanologica Sinica, 2013, 35(6): 31–42.
|
[14] |
Liu M Y, Li H Y, Li L, et al. Monitoring the invasion of Spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang Estuary, China [J]. Remote Sensing, 2017, 9(6): 1–18.
|
[15] |
Liu M Y, Mao D H, Wang Z M, et al. Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: New observations from Landsat OLI images [J]. Remote Sensing, 2018, 10(12): 1–19.
|
[16] |
Cao X M, Gao Z Q. The responses of evapotranspiration due to changes of LUCC under seawater intrusion in a coastal region [J]. Environmental Earth Sciences, 2013, 70(4): 1853–1862.
|
[17] |
Wang M, Cui Q, Wang J, et al. Raft cultivation area extraction from high resolution remote sensing imagery by fusing multiscale region-line primitive association features [J]. Isprs Journal of Photogrammetry & Remote Sensing, 2017, 123: 104–113.
|
[18] |
Wang Z H, Yang X M, Liu Y M, et al. Extraction of coastal raft cultivation area with heterogeneous water background by thresholding object-based visually salient NDVI from high spatial resolution imagery [J]. Remote Sensing Letters, 2018, 9(9): 839– 846.
|
[19] |
兰国新, 李颖, 陈澎. 溢油遥感监测时效性分析——以大连新港 溢油为例 [J]. 海洋科学进展, 2012, 30(4):556–566. Lan G X, Li Y, Chen P. Time effectiveness analysis of remote sensing monitoring of oil spill emergencies: A case study of oil spill in the Dalian Xingang port [J]. Advances in Marine Science, 2012, 30(4): 556–566.
|
[20] |
Hu P, Liu Y H, Hou Y J, et al. An early forecasting method for the drift path of green tides: A case study in the Yellow Sea, China [J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 71: 121–131.
|
[21] |
Lan H X, Zhao X X, Wu Y M, et al. Settlement and deformation characteristics of calcareous Island-reef [J]. Periodical of Ocean University of China, 2017, 47(10): 1–8.
|
[22] |
左秀玲, 苏奋振, 赵焕庭, 等. 南海珊瑚礁高分辨率遥感地貌分 类体系研究 [J]. 地理科学进展, 2018, 37(11): 1463–1472. Zuo X L, Su F Z, Zhao H T, et al. Development of a geomorphic classification scheme for coral reefs in the South China Sea based on high resolution satellite images [J]. Progress in Geography, 2018, 37(11): 1463–1472.
|
[23] |
夏帆. 海洋争端案件中的遥感证据研究 [J]. 太平洋学报, 2017, 25(6): 55–64. Xia F. Study on remote sensing evidence of maritime disputes [J]. Pacific Journal, 2017, 25(6): 55–64.
|
[24] |
Jiang H P, Su F Z, Zhou C H, et al. The geographical characteristics of Nansha Islands in the South China Sea [J]. Journal of Geographical Sciences, 2018, 28(7): 957–972.
|
[25] |
Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven earth system science [J]. Nature, 2019, 566(2): 195–204.
|
/
〈 |
|
〉 |