水下攻防对抗体系及其未来发展

谢伟, 杨萌, 龚俊斌

中国工程科学 ›› 2019, Vol. 21 ›› Issue (6) : 71-79.

PDF(1582 KB)
PDF(1582 KB)
中国工程科学 ›› 2019, Vol. 21 ›› Issue (6) : 71-79. DOI: 10.15302/J-SSCAE-2019.06.014
海洋强国战略研究
Orginal Article

水下攻防对抗体系及其未来发展

作者信息 +

Underwater Attack–Defense Confrontation System and Its Future Development

Author information +
History +

摘要

为顺应现代海战的演进趋势,水下攻防对抗正朝着体系化方向发展,综合了水下预警、侦察、探测、攻防等一系列行动。虽然单一领域的武器装备发展迅速,但水下攻防仍存在对抗体系的能力建设、作战样式、未来发展重点不甚清晰等问题。本文梳理了军事强国水下对抗体系建设的现状与基础,分析研判了未来水下攻防对抗体系的功能组成和典型作战样式,重点阐述了水下攻防对抗体系装备发展的主要方向,同时提出了加强综合感知和导航、发展联合指挥控制、注重军民融合式发展等水下攻防体系与装备的建设举措。相关研究可为我国未来水下攻防对抗的顶层设计和装备论证提供理论参考。

Abstract

As an important development direction of naval warfare, the underwater attack–defense confrontation system integrates underwater warning, scout, detection, attack, defense and a series of other operations. Currently, although underwater offensive and defensive weapons have developed rapidly, research on the capacity building, combat styles, and development priorities of the confrontation system still lacks. This paper first summarizes the status quo of underwater confrontation system construction in some military powers, and analyzes the functional composition and typical combat styles of the future underwater attack–defense confrontation system. Furthermore, it systematically studies the development directions of the future confrontation system, and proposes corresponding suggestions for the development of the underwater attack–defense system and equipment, including improving integrated perception and navigation, developing unified command and control, and promoting military-civilian integration.

关键词

水下攻防 / 对抗体系 / 协同作战 / 无人系统

Keywords

underwater attack and defense / confrontation system / coordinated combat / unmanned system

引用本文

导出引用
谢伟, 杨萌, 龚俊斌. 水下攻防对抗体系及其未来发展. 中国工程科学. 2019, 21(6): 71-79 https://doi.org/10.15302/J-SSCAE-2019.06.014

参考文献

[1]
司广宇, 苗艳, 李关防. 水下立体攻防体系构建技术 [J].指挥控 制与仿真, 2018, 40(1): 1–8. Si G Y, Miao Y, Li G F. Underwater tridimensional attack-defense system technology [J]. Command Control & Simulation, 2018, 40(1): 1–8.
[2]
马力, 张明智. 基于复杂网络的战争复杂体系建模研究进展 [J]. 系统仿真学报, 2015, 27(2): 217–225, 245. Ma L, Zhang M Z. Research progress on war complex system of systems modeling [J]. Journal of System Simulation, 2015, 27(2): 217–225, 245.
[3]
Vaccaroand R J, Harrison B F. Optimal matrix-filter design [J]. IEEE Transactions on Signal Processing, 1996, 44(3): 705–709.
[4]
Cox H. Multi-rate adaptive beamforming (MRABF) [C]. Cambridge: Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop, 2000.
[5]
孙超. 水下多传感器阵列信号处理 [M]. 西安: 西北工业大学出 版社, 2007. Sun C. Signal processing for underwater multi-sensor array [M]. Xi’an: Northwestern Polytechnical University Press, 2007.
[6]
Capon J. High-resolution frequency-wave number spectrum analysis [J]. Proceedings of the IEEE, 1969, 57(8): 1408–1418.
[7]
杨智栋, 李荣融, 蔡卫军, 等. 国外水下预置武器发展及关键技 术 [J]. 水下无人系统学报, 2018, 26(6): 521–526. Yang Z D, Li R R, Cai W J, et al. Development and key technologies of preset undersea weapon: A review [J]. Journal of Unmanned Undersea Systems, 2018, 26(6): 521–526.
[8]
曹海旺, 薛朝改, 黄建国, 等. 一体化水下对抗仿真环境的设计 与实现 [J]. 系统仿真学报, 2006, 18(z2): 285–288. Cao H W, Xue C G, Huang J G, et al. Design and realization of integrated simulation environmentfor underwater counterwork [J]. Journal of System Simulation, 2006, 18(z2): 285–288.
[9]
曹海旺, 黄建国, 胡方. 基于对象Petri网的水下对抗系统建模 [J]. 系统仿真学报, 2007, 19(12): 2642–2646, 2653. Cao H W, Huang J G, Hu F. Modeling of underwater counterwork system based on object Petri net [J]. Journal of System Simulation, 2007, 19(12): 2642–2646, 2653.
[10]
齐正云, 褚福照. 水声对抗推演及效能评估系统设计与实现 [J]. 舰船电子工程, 2017, 37(10): 100–103. Qi Z Y, Chu F Z. Design and implementation of effectiveness evaluation system for underwater acoustic warfare [J]. Ship Electronic Engineering, 2017, 37(10): 100–103.
[11]
马国强. 复杂环境下水声对抗训练及效果评估系统开发 [C]. 成 都: 2014年水声对抗技术学术交流会, 2014. Ma G Q. Acoustic antagonizing training under the complicated underwater acoustic environment and developing of assistant effect evaluating system [C]. Chengdu: Proceedings of the 2004 Acoustic Warfare Technology, 2004.
[12]
李明辉. 基于蒙特卡洛法的水下对抗效能推演评估研究 [D]. 武 汉: 中国舰船研究设计中心 (硕士学位论文), 2014. Li M H. The research of ship’s underwater combat deduction and assessment based on the Monte Carlo method [D]. Wuhan: China Ship Development and Design Center (Master’s thesis), 2014.
[13]
熊鹏俊, 刘智, 张昊, 等. 水下攻防作战体系研究 [J]. 舰船科学 技术, 2016, 38(10): 145–149. Xiong P J, Liu Z, Zhang H, et al. The development of undersea attack-defense warfare system [J]. Ship Science and Technology, 2016, 38(10): 145–149.
[14]
潘光, 宋保维, 黄桥高, 等. 水下无人系统发展现状及其关键技 术 [J]. 水下无人系统学报, 2017, 25(1): 44–51. Pan G, Song B W, Huang Q G, et al. Development and key techniques of unmanned undersea system [J]. Journal of Unmanned Undersea Systems, 2017, 25(1): 44–51.
[15]
尹伟伟, 郭士荦. 非卫星水下导航定位技术综述 [J]. 舰船电子 工程, 2017, 37(3): 8–11. Yin W W, Guo S L. Survey on non-satellite underwater navigation and positioning technology [J]. Ship Electronic Engineering, 2017, 37(3): 8–11.
基金
中国工程院咨询项目“海洋强国战略研究2035”(2018-ZD-08);国家自然科学基金青年基金项目(61503354);湖北省自然科学基金项目(2018CFB180)
PDF(1582 KB)

Accesses

Citation

Detail

段落导航
相关文章

/