
深海装备耐压结构用钛合金材料应用研究
Application of Titanium Alloy Materials for the Pressure-Resistant Structure of Deep Diving Equipment
本文概述了国内外钛合金深海装备的发展现状,针对深海服役环境特点对耐压结构用钛合金材料的性能要求进行了分析,介绍了典型装备耐压结构钛合金材料研究应用中出现的应力腐蚀和蠕变等技术问题,提出需要针对钛合金材料长期服役时存在的组织演变和性能衰减、冲击环境下的动态响应等基础科学问题开展研究,重点梳理工程应用中的大规格材料、应用评价和高效建造等关键技术。文章建议针对深海领域钛合金装备的迫切需求,进一步加大钛合金材料基础研究和工程化应用力度,推动创新应用,践行海洋强国战略。
The development of titanium alloy deep-diving equipment is first summarized, and the desired properties of titanium alloy materials are then analyzed considering the characteristics of the deep-sea service conditions. Technical challenges faced by the application of deep-diving equipment are also introduced, including stress corrosion, compressive creep, microstructure evolution, property attenuation, and dynamic response under impact loading. Finally, key technologies in engineering application are summarized, such as large-size materials, application evaluation, and efficient construction. To satisfy the urgent demand for titanium alloy equipment in the deep-diving field, we propose to further increase basic research and engineering application of titanium alloy materials, and promote innovative application.
deep diving equipment / pressure-resistant structure / titanium alloy / key technology
[1] |
杨磊, 杜志元, 陈云赛, 等. 我国三类典型深海运载装备应用技 术研究 [J]. 海洋开发与管理, 2018, 35(9): 100–106. Yang L, Du Z Y, Chen Y S, et al. The operation and application technology of China’s three typical deep-sea submersibles [J]. Ocean Development and Management, 2018, 35(9): 100–106.
|
[2] |
赵羿羽, 曾晓光, 郎舒妍. 深海装备技术发展趋势分析 [J]. 船舶 物资与市场, 2016 (5): 42–45. Zhao Y Y, Zeng X G, Lang S Y. Analysis of the development trend of deep-sea equipment technology [J]. Marine Equipment/ Materials & Marketing, 2016 (5): 42–45.
|
[3] |
屈平. 深海钛合金耐压结构蠕变特性探索研究 [D]. 北京: 中国 舰船研究院 (硕士学位论文), 2015. Qu P. Exploratory study of the creep characteristic for titanium deep-sea pressure shell [D]. Beijing: China Ship Research Institute (Master’s thesis), 2015.
|
[4] |
李献军, 王镐, 冯军宁, 等. 钛在海洋工程领域应用现状及发展 趋势 [J]. 世界有色金属, 2014 (9): 30–32. Li X J, Wang G, Feng J N, et al. Application status and development trend of titanium in ocean engineering [J]. World Nonferrous Metals, 2014 (9): 30–32.
|
[5] |
王镐, 李献军. 钛在海洋工程应用的最新进展 [J]. 中国钛业, 2012 (1): 11–14. Wang G, Li X J. New developments of titanium in ocean engineering application [J]. Chinese Titanium Industry, 2012 (1): 11–14.
|
[6] |
田非, 杨雄辉. 舰艇用钛合金技术应用分析 [J]. 中国舰船研究, 2009, 4(3): 77–80. Tian F, Yang X H. Application of titanium alloys in ship building [J]. Chinese Journal of Ship Research, 2009, 4(3): 77–80.
|
[7] |
于宇, 李嘉琪. 国内外钛合金在海洋工程中的应用现状与展望 [J]. 材料开发与应用, 2018, 33(3): 111–116. Yu Y, Li J Q. Current application and prospect of titanium alloys in marine engineering [J]. Development and Application of Materials, 2018, 33(3), 111–116.
|
[8] |
雷家峰, 马英杰, 杨锐, 等. 全海深载人潜水器载人球壳的选材 及制造技术 [J]. 工程研究, 2016, 8(2): 179–184. Lei J F, Ma Y J, Yang R, et al. Material and fabrication of the personnel hull for full ocean depth submersible [J]. Journal of Engineering Studies, 2016, 8(2): 179–184.
|
[9] |
石佳睿, 唐文勇. 载人深潜器钛合金耐压球壳极限强度可靠性 分析 [J]. 船海工程, 2014, 43(2): 114–118. Shi J R, Tang W Y. Ultimate strength reliability analysis of titanium alloy spherical pressure shell in HOV [J]. Ship & Ocean Engineering, 2014, 43(2): 114–118.
|
[10] |
刘强, 惠松骁, 宋生印, 等. 油气开发用钛合金油井管选材及工 况适用性研究进展 [J]. 材料导报, 2019, 33(5): 841–853. Liu Q, Hui S X, Song S Y, et al. Materials selection of titanium alloy OCTG used for oil and gas exploration and their applicability [J]. Materials Review, 2019, 33(5): 841–853.
|
[11] |
吴欣袁, 张恒, 徐学军, 等. 钛合金在石油天然气勘探开发中的 应用 [J]. 石油化工应用, 2016, 35(11): 105–108, 113. Wu X Y, Zhang H, Xu X J, et al. Application of titanium alloy in oil & gas exploration and development [J]. Petrochemical Industry Application, 2016, 35(11): 105–108, 113.
|
[12] |
冯雅奇, 贾栓孝, 王韦琪, 等. 深潜器载人舱用TC4 ELI钛合金半 球壳的研制 [J]. 钛工业进展, 2016, 33(1): 19–22. Feng Y Q, Jia S X, Wang W Q, et al. Development of TC4 ELI titanium alloy hemisphere shell for manned submersible [J]. Titanium Industry Progress, 2016, 33(1): 19–22.
|
[13] |
Goode R J, Huber R W. Fracture toughness characteristics of some titanium alloy for deep-diving vehicles [R]. Washington, DC: The US Naval Research Laboratory, 1965.
|
[14] |
Duan Q Q, Qu R T, Zhang P, et al. Intrinsic impact toughness of relatively high strength alloys [J]. Acta Materialia, 2018, 142(1): 226–235.
|
[15] |
Pellini W S. Principles of structural integrity technology [R]. Arlington: Office of Naval Research, 1976.
|
[16] |
Loss F J. Ductile fracture test methods [R]. Washington, DC: US Nuclear Regulatory Commission, 1985.
|
[17] |
Tran J. Titanium by design: TRIP titanium alloy [D]. Evanston: Northwestern University (Doctoral dissertation), 2009.
|
[18] |
Omprakash C M, Satyanarayana D V V, Kumar V. Effect of microstructure on creep and creep crack growth behaviour of titanium alloy [J]. Transactions of the Indian Institute of Metals, 2010, 63(2–3): 457–459.
|
[19] |
Jaworski A, Ankem P S. Influence of the second phase on the room-temperature tensile and creep deformation mechanisms of α-β titanium alloys, part II: Creep deformation [J]. Metallurgical and Materials Transactions A, 2006, 37(9): 2756–2765.
|
[20] |
胡付立, 刘建良, 陈敬超. 钛及钛合金热轧中厚板轧机选择及高 效使用 [J]. 云南冶金, 2012, 41(33): 52–55. Hu F L, Liu J L, Chen J C. Rolling mill selection for hot-rolled medium and heavy plate of titanium and titanium alloy and its efficient use [J]. Yunnan Metallurgy, 2012, 41(33): 52–55.
|
[21] |
吴文琥, 高文超, 刘璇, 等. 大规格TC4钛合金板坯的制备 [J]. 热 加工工艺, 2017, 46(7): 183–185. Wu W H, Gao W C, Liu X, et al. Preparation of large size TC4 alloy slab [J]. Hot Working Technology, 2017, 46(7): 183–185.
|
[22] |
肖伟星. 船用钛合金材料焊接中的常见问题与对策 [J]. 中国设 备工程, 2019 (2): 188–189. Xiao W X. Common problems and countermeasures in welding of marine titanium alloy materials [J]. China Plant Engineering, 2019 (2): 188–189.
|
/
〈 |
|
〉 |