泛在网络空间大数据“雾云计算”软件体系结构

贾焰, 方滨兴, 汪祥, 王永恒, 安静斌, 李爱平, 周斌

中国工程科学 ›› 2019, Vol. 21 ›› Issue (6) : 114-119.

PDF(662 KB)
PDF(662 KB)
中国工程科学 ›› 2019, Vol. 21 ›› Issue (6) : 114-119. DOI: 10.15302/J-SSCAE-2019.10.001
工程管理
Orginal Article

泛在网络空间大数据“雾云计算”软件体系结构

作者信息 +

Software Architecture of Fogcloud Computing for Big Data in Ubiquitous Cyberspace

Author information +
History +

摘要

随着网络空间从传统互联网向人、机、物、服务与应用互联的泛在网络空间扩展,计算模式从“以云端集中计算为中心”向“前端、中间层和云端相结合”的方式转变,传统的云计算、边缘计算等计算模式难以满足泛在网络空间大数据计算需求。本文针对泛在网络空间大数据计算面临的问题,在知识体基础上,提出了一种泛在网络空间大数据“雾云计算”软件体系结构,在多知识体协同计算语言与模型基础上,实现雾端、中间层和云端多知识体的协同计算,为泛在网络空间大数据计算提供解决方案。

Abstract

The cyberspace has expanded from traditional internet to ubiquitous cyberspace which interconnects human, machines,things, services, and applications. The computing paradigm is also shifting from centralized computing in the cloud to combined computing in the front end, middle layer, and cloud. Therefore, traditional computing paradigms such as cloud computing and edge computing can no longer satisfy the evolving computing needs of big data in ubiquitous cyberspace. This paper presents a computing architecture named Fogcloud Computing for big data in ubiquitous cyberspace. Collaborative computing by multiple knowledge actors in the fog, middle layer, and cloud is realized based on the collaborative computing language and models, thereby providing a solution for big data computing in ubiquitous cyberspace.

关键词

雾云计算 / 泛在网络空间 / 大数据 / 物联网 / 云计算

Keywords

fogcloud computing / ubiquitous cyberspace / big data / Internet of Things / cloud computing

引用本文

导出引用
贾焰, 方滨兴, 汪祥. 泛在网络空间大数据“雾云计算”软件体系结构. 中国工程科学. 2019, 21(6): 114-119 https://doi.org/10.15302/J-SSCAE-2019.10.001

参考文献

[1]
Schroeder B, Gibson G. A large-scale study of failures in highperformance computing systems [J]. IEEE Transactions on Dependable and Secure Computing, 2009, 7(4): 337–350.
[2]
罗军舟, 金嘉晖, 宋爱波, 等. 云计算: 体系架构与关键技术 [J]. 通信学报, 2011 (7): 3–21. Luo J Z, Jin J H, Song A B, et al. Cloud computing: Architecture and key technologies [J]. Journal on Communications, 2011 (7): 3–21.
[3]
Bonomi F, Milito R, Zhu J, et al. Fog computing and its role in the internet of things [C]. Helsinki: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, 2012.
[4]
Shi W, Cao J, Zhang Q, et al. Edge computing: Vision and challenges [J]. IEEE Internet of Things Journal, 2016, 3(5): 637–646.
[5]
刘大有, 杨鲲, 陈建中. Agent研究现状与发展趋势 [J]. 软件学 报, 2000, 11(3): 315–321. Liu D Y, Yang K, Chen J Z. Agents: Present status and trends [J]. Journal of Software, 2000, 11(3): 315–321.
[6]
Olfati-Saber R, Fax J A , Murray R M. Consensus and cooperation in networked multi-agent systems [J]. Proceedings of the IEEE, 2007, 95(1): 215–233.
[7]
Mayer-Schonberger V, Cukier K. Big data: A revolution that will transform how we live, work, and think [M]. Boston: Houghton Mifflin Harcourt, 2013.
[8]
Sicari S, Rizzardi A, Grieco L A, et al. Security, privacy and trust in Internet of Things: The road ahead [J]. Computer Networks, 2015, 76(15): 146–164.
[9]
Fang B X, Jia Y, Li X, et al. Big search in cyberspace [J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(9): 1793–1805.
[10]
López G, Quesada L, Guerrero L A. Alexa vs. Siri vs. Cortana vs. Google Assistant: A comparison of speech-based natural user interfaces [C]. Los Angeles: International Conference on Applied Human Factors and Ergonomics, 2017.
[11]
Baker M. Real, unreal, and hacked [J]. IEEE Pervasive Computing, 2018, 17(1): 104–112.
基金
中国工程院咨询项目“面向2035 的网络舆情管理发展战略研究”(2016-ZCQ-10);自然科学基金重点项目“面向复杂查询的异质媒体搜索理论与方法研究”(61732004);自然科学基金面上项目“面向云计算平台的数据安全与隐私保护关键技术研究”(61472433);自然科学基金重点项目“泛在网安全搜索基础理论与技术”(61732022)
PDF(662 KB)

Accesses

Citation

Detail

段落导航
相关文章

/