
全光谱 LED 照明用荧光粉发展现状及趋势
Current Situation and Trend of the Phosphors for Full Spectrum LED Lighting
随着人们对照明品质要求的提高,全光谱发光二极管(LED)照明成为发展热点。本文对全光谱 LED 用关键材料——荧光粉进行了详细分析,对比了每种体系的发光性能并给出了各类型的代表材料,重点阐述了紫光–近紫外光激发的多种颜色荧光粉的优劣势、研究进展以及实际应用情况,对该领域存在问题及其发展趋势、重点产业发展方向进行了分析和展望。目前可供全光谱使用的紫光–近紫外光激发的荧光粉存在蓝粉和青粉普遍发射光谱窄、光效偏低和热稳定性较差,黄粉及远红光荧光粉对紫光或近紫外光的吸收较低导致发光效率不佳,单一基质白光荧光粉的红光发射不足等问题,其中发光光效和热稳定性仍然是制约各类荧光粉应用的关键因素。研究提出,可重点突破适合紫光–近紫光激发高光效和高热稳定性的宽谱蓝粉、青粉、黄绿粉、黄粉、长波红粉以及单一基质白光荧光粉的制备和应用技术,开发与现有应用产品体系相匹配的高效及连续化制备技术,由此促进全光谱 LED 的进一步发展。
With the increase of the requirements for lighting quality, full spectrum light emitting diode (LED) lighting becomes the development hotspot. In this paper, the key materials for full spectrum LED phosphors are discussed and compared in detail. The advantages and disadvantages, research progress, and practical application of various color phosphors excited by violet and near ultraviolet light are emphasized, and then the existing problems, development trend, and industrial direction in this field are analyzed and prospected. Currently, there remain many problems in the phosphors excited by violet and near ultraviolet light, which can be applied in full spectrum. For example, the blue and cyan phosphors take on narrow emission spectrum, low light efficiency, and poor thermal stability; yellow phosphors and far-red phosphors have a low luminous efficiency due to their low absorption of violet or near ultraviolet light; and single matrix white phosphors have insufficient red light emission. Among them, luminous efficiency and thermal stability are the key factors restricting the application of the phosphors. Therefore, it is urgent to research the preparation and application technology of wide spectrum blue, cyan, yellow green, yellow, far-red, and single matrix white phosphors with high light efficiency and thermal stability, and develop the high-efficient and continuous preparation technology of the present phosphor products, to promote the further development of full spectrum LED.
full spectrum LED / high-quality lighting / violet LED chip / phosphors
[1] |
Bigot K, Barrauc C, Gondouin P, et al. Blue light toxic action spectrum on A2E-loaded RPE cells in sunlight normalized conditions [J]. Acta Ophthalmologica, 2013, 91(S252): 10.
|
[2] |
赵芳仪,刘小浪, 宋振, 等. 超高显色指数、全光谱白光LED封装 技术 [J]. 照明工程学报, 2019, 30(3): 75–80. Zhao F Y, Liu X L, Song Z, et al. Packaging technology for ultrahigh color rendering index and full spectrum white LED [J]. China Illuminating Engineering Journal, 2019, 30(3): 75–80.
|
[3] |
李琪, 辛易. 全光谱LED发展现状及应用前景 [J]. 中国照明电 器, 2017 (3): 12–16. Li Q, Xin Y. Advancement and trends of full spectrum LED [J]. China Light & Lighting, 2017 (3): 12–16.
|
[4] |
曹小兵, 黎兰兰, 冉崇高, 等. 健康照明之全光谱LED应用展望 [J]. 中国照明电器, 2019 (5): 11–14. Cao X B, Li L L, Ran C G, et al. Prospects for full spectrum LED applications for healthful lighting [J]. China Light & Lighting, 2019 (5): 11–14.
|
[5] |
柳丝婉, 韩秋漪, 李福生, 等. 全光谱白光LED研究进展 [J]. 光源 与照明, 2019 (2): 14–19. Liu S W, Han Q Y, Li F S, et al. Research progress of full spectrum white LED [J]. Lamps & Lighting, 2019 (2): 14–19.
|
[6] |
李亚利. 全光谱LED在专业照明领域的应用 [J]. 电子世界, 2018 (10) : 77–78. Li Y L. Application of full spectrum LED in professional lighting field [J]. Electronics World, 2018 (10): 77–78.
|
[7] |
丁小明. 温室番茄生产全光谱LED补光技术 [J]. 农业工程技术, 2019 (16): 74–75. Ding X M. Full spectrum LED light supplementary technology for greenhouse tomato production [J]. Agricultural Engineering Technology, 2019 (16): 74–75.
|
[8] |
Lin C C, Lin R S. Advances in phosphors for light-emitting diodes [J]. The Journal of Physical Chemistry Letters, 2011, 2(11): 1268– 1277.
|
[9] |
刘康, 郭震宁, 林介本, 等. 高亮度白光LED混色理论及其实验 研究 [J]. 照明工程学报, 2012, 23(1): 51–57. Liu K, Guo Z N, Lin J B, et al. Theoretical and experimental investigation on mixture of high brightness white LEDs [J]. China Illuminating Engineering Journal, 2012, 23(1): 51–57.
|
[10] |
张国义, 陈志忠. 固态照明光源的基石——氮化镓基白光发光二 极管 [J]. 物理, 2004, 33(11): 833–842. Zhang G Y, Chen Z Z. The basis of solid state lighting: GaN white light emitting diodes [J]. Physics, 2004, 33(11): 833–842.
|
[11] |
刘军林, 莫春兰, 张建立, 等. 五基色LED照明光源技术进展 [J]. 照明工程学报, 2017, 28(1): 1–5. Liu J L, Mo C L, Zhang J L, et al. Progress of five primary colors LED lighting source technology [J]. China Illuminating Engineering Journal, 2017, 28(1): 1–5.
|
[12] |
Yan C P, Zhuang W D, Liu R H, et al. Dehydrogenation driven to synthesize high-performance Lu2Si4N6C:Ce3+—A broad greenemitting phosphors for full-spectrum lighting [J]. Journal of Alloys and Compounds, 2019, 783: 855–862.
|
[13] |
Zhang X G, Chen Y B, Zhou L Y, et al. NUV chip based white LED using thermal stable Eu2+-activated phosphate and borate phosphor [J]. Materials Letters, 2013, 93(15): 390–392.
|
[14] |
深圳市LED产业标准联盟. 室内健康照明设计规范第1部分: 全光谱技术要求 SZTT/LSA 024.1—2019 [S]. 深圳: 深圳市LED 产业标准联盟, 2019. Shenzhen LED Industry Standards Alliance. Indoor health lighting design specification first part: Full spectrum technology requirements SZTT/LSA 024.1—2019 [S]. Shenzhen: Shenzhen LED Industry Standards Alliance, 2019.
|
[15] |
蔡建奇, 高伟, 郭娅, 等. 健康照明的基础研究和标准研制的探 讨 [J]. 照明工程学报, 2017, 28(6): 24–28. Cai J Q, Gao W, Guo Y, et al. Discussion on the fundamental research and standard developing of healthy lighting [J]. China Illuminating Engineering Journal, 2017, 28(6): 24–28.
|
[16] |
秦永豪.高品质健康LED光源的制备与研究 [D]. 北京: 北京交 通大学(硕士学位论文), 2019. Qin Y H. Preparation and research of high quality healthy LED light source [D]. Beijing: Beijing Jiaotong University (Master’s thesis), 2019.
|
[17] |
Shen C, Yang Y, Jin S, et al. Luminous characteristics and thermal stability of BaMgAl10O17:Eu2+ phosphor for white light-emitting diodes [J]. Physica B: Condensed Matter, 2010, 405(4): 1045– 1049.
|
[18] |
Wang Q, Zhu G, Xin S, et al. A blue-emitting Sc silicate phosphor for ultraviolet excited light-emitting diodes [J]. Physical Chemistry Chemical Physics, 2015, 17(41): 27292–27299.
|
[19] |
Zheng J, Cheng Q, Wu S, et al. An efficient blue-emitting Sr5(PO4)3Cl:Eu2+ phosphor for application in near-UV white lightemitting diodes [J]. Journal of Materials Chemistry C, 2015, 3(42): 11219–11227.
|
[20] |
Zhang S, Hao Z D, Zhang L L, et al. Efficient blue-emitting phosphor SrLu2O4:Ce3+ with high thermal stability for near ultraviolet (~400 nm) LED-Chip based white LEDs [J]. Scientific Reports, 2018, 8(1): 10463.
|
[21] |
Deressa G, Park K W, Kim J S. Sr–Ba combinational effect on spectral broadening of blue (Sr,Ba)5(PO4)3Cl:Ce3+ phosphor for a high color-rendering index [J]. Chemical Physics Letters, 2016, 645: 42–47.
|
[22] |
Li Y Q, Delsing A C A, With G D, et al. Luminescence properties of Eu2+-activated alkaline-earth Silicon-Oxynitride MSi2O2-δ N2+2/3δ(M=Ca, Sr, Ba): A promising class of novel LED conversion [J]. Chemistry of Materials, 2005, 17: 3242–3248.
|
[23] |
Liu Y F, Zhang J, Zhang C, et al. Ba9Lu2Si6O24:Ce3+: An efficient green phosphor with high thermal and radiation stability for solidstate lighting [J]. Advanced Optical Materials, 2015, 3(8): 1096– 1101.
|
[24] |
Yan C P, Liu Z N, Zhuang W D, et al. YScSi4N6C:Ce3+ a broad cyan-emitting phosphor to weaken the cyan cavity in full-spectrum white light-emitting diodes [J]. Inorganic Chemistry, 2017, 56(18): 11087–11095.
|
[25] |
庄卫东, 钟继有, 徐会兵, 等. 一种荧光粉及其制备方法: CN201410069057.7 [P]. 2014. Zhuang W D, Zhong J Y, Xu H B, et al. A phosphor and its preparation method: CN201410069057.7 [P]. 2014.
|
[26] |
Zhong J, Zhuang W, Xing X, et al. Synthesis, structure and luminescence properties of new blue-green-emitting garnet-type Ca3Zr2SiGa2O12:Ce3+ phosphor for near-UV pumped white-LEDs [J]. RSC Advances, 2016, 6(3): 2155–2161.
|
[27] |
Xie R J, HirosakI N, Li Y, et al. Rare-Earth activated nitride phosphors: Synthesis, luminescence and applications [J]. Materials, 2010, 3(6): 3777–3793.
|
[28] |
Zhang S S, Zhuang W D, Zhao C L, et al. Study on (Y,Gd)3 (Al,Ga)5O12:Ce3+ phosphor [J]. Journal of Rare Earths, 2004, 22(1): 118–121.
|
[29] |
Seto T, Kijima N, Hirosaki N. A new yellow phosphor La3Si6N11:Ce3+ for white LEDs [J]. ECS Transactions, 2009, 25(9): 247–252.
|
[30] |
Kim T G, Lee H S, Lin C C, et al. Effects of additional Ce3+ doping on the luminescence of Li2SrSiO4: Eu2+ yellow phosphor [J]. Applied Phydics Letters, 2010, 96(6): 1–3.
|
[31] |
Huang C H, Chiu Y C, Yeh Y T, et al. Eu2+-activated Sr8ZnSc(PO4)7: A novel near-ultraviolet converting yellow-emitting phosphor for white light-emitting diodes [J]. Acs Applied Materials Interfaces, 2012, 4(12): 6661–6668.
|
[32] |
Teng X M, Liu Y H, Liu Y Z, et al. Luminescence properties of Tm3+ co-doped-Sr2Si5N8: Eu2+ red phosphor [J]. Journal of Luminescence, 2010, 130(5): 851–854.
|
[33] |
Teng X M, Liu Y H, Liu Y Z, et al. Preparation and luminescence properities of the red-emitting phophor (Sr1–xCax)2Si5N8:Eu2+ with different Sr/Ca ratios [J]. Jouranal of Rare Earths, 2009, 27(1): 58–61.
|
[34] |
Hu Y S, Zhuang W D, He H Q, et al. High temperature stability of Eu2+-activated nitride red phosphors [J]. Journal of Rare Earths, 2014, 32(1): 12–16.
|
[35] |
Teng X M, Zhuang W D, Hu Y S, et al. Luminescence properties of nitride red phosphor for LED [J]. Jouranal of Rare Earths, 2008, 25(5): 652–655.
|
[36] |
Fu J, Zhang Q, Li Y, et al. Highly luminescent red light phosphor CaTiO3:Eu3+ under near-ultraviolet excitation [J]. Journal of Luminescence, 2010, 130(2): 231–235.
|
[37] |
Sahu I P, Bisen D P, Brahme N, et al. Luminescent properties of R+ doped Sr2MgSi2O7:Eu3+ (R+ =Li+ , Na+ and K+ ) orange-red emitting phosphors [J]. Journal of Materials Science: Materials in Electronics, 2016, 27(7): 6721–6734.
|
[38] |
Hu Y S, Zhuang W D, Ye H Q. Luminescent properties of Samarium ion in Calcium Molybdate [J]. Journal of Rare Earths, 2004, 22(6): 821–824.
|
[39] |
Xu J, Ueda J, Tanabe S. Toward tunable and bright deep-red persistent luminescence of Cr3+ in garnets [J]. Journal of the American Ceramic Society, 2017, 100(9): 4033–4044.
|
[40] |
洪薪超, 孙晶, 周晨, 等. Cr3+在不同基质 Y3Ga5O12 或 Ga2O3中的 荧光特性 [J]. 无机化学学报, 2019, 35(6): 1059–1064. Hong X C, Sun J, Zhou C, et al. Fluorescence characteristics of Cr3+ in different matrices Y3Ga5O12 or Ga2O3 [J]. Chinese Journal of Inorganic Chemistry, 2019, 35(6): 1059–1064.
|
[41] |
Guo C, Luan L, Xu Y, et al. White light–generation phosphor Ba2Ca(BO3)2:Ce3+,Mn2+ for light-emitting diodes [J]. Journal of the Electrochemical Society, 2008, 155(11): 310–314.
|
[42] |
Brgoch J, Borg C K, Denault K A, et al. An efficient, thermally stable cerium-based silicate phosphor for solid state white lighting [J]. Inorganic Chemistry, 2013, 52 (14): 8010–8016.
|
[43] |
Xiong Z X, Song C X, Wu W, et al. Effectof sintering time on luminescent properties of YAG:Ce3+phosphor [J]. Journal of Rare Earths, 2004, 22 (Z1): 137–139.
|
[44] |
Li X, Liu H, Wang J Y, et al. YAG:Ce nano-sized phosphor particles prepared by a solvotherma [J]. Materials Research Bulletin, 2004, 39 (12): 1923–1930.
|
[45] |
罗鸣, 于文肖, 石士考, 等. 白光LED用钼酸盐红色荧光粉水热 合成法的研究进展 [J]. 化工新型材料, 2015, 43(2): 21–23. Luo M, Yu W X, Shi S K, et al. Progress in synthesis of molybdate red emitting phosphor for white-LED via hydrothermal method [J]. New Chemical Materials, 2015, 43(2): 21–23.
|
[46] |
陈凯, 徐会兵, 邵冷冷, 等. 白光LED用β-Sialon:Eu2+ 氮氧化物 绿色荧光粉的研究进展 [J]. 中国稀土学报 , 2017, 35(4): 440– 448. Chen K, Xu H B, Shao L L, et al. Research progress in β-Sialon: Eu2+ Oxynitride green phosphors for white LED [J]. Journal of the Chinese Society of Rare Earths, 2017, 35 (4): 440–448.
|
/
〈 |
|
〉 |