装备升级换代背景下金属基复合材料的发展机遇和挑战

武高辉, 匡泽洋

中国工程科学 ›› 2020, Vol. 22 ›› Issue (2) : 79-90.

PDF(3890 KB)
PDF(3890 KB)
中国工程科学 ›› 2020, Vol. 22 ›› Issue (2) : 79-90. DOI: 10.15302/J-SSCAE-2020.02.012
新兴产业发展战略研究(2035)
Orginal Article

装备升级换代背景下金属基复合材料的发展机遇和挑战

作者信息 +

Opportunities and Challenges for Metal Matrix Composites in the Context of Equipment Upgrading

Author information +
History +

摘要

本文从产业化发展战略的角度出发,对我国金属基复合材料的形成和发展进行了评述。简要总结了我国金属基复合材料的发展历程,梳理了当前快速发展阶段中金属基复合材料在几个主要制备方法,如原位自生法、搅拌铸造法、粉末冶金法、压力浸渗法中取得的关键性技术突破。在此基础上,列举了对装备升级换代产生显著推动作用、具有代表性的金属基复合材料工程应用案例,预测了未来5~10年金属基复合材料的发展趋势。针对当前国防与国民经济领域装备技术发展对材料技术提出的挑战,分析了金属基复合材料在军民两用市场的发展机遇与前景,同时就产业化技术和产业环境的不足,从夯实国家级产业化平台和壮大人才培养基地、加大国家投入、加快标准和数据库体系建设、开发低成本高品质材料制备技术4个方面提出了发展建议。

Abstract

In this paper, the application progress and development of metal matrix composites (MMCs) are reviewed from the perspective of industrialization strategy. The development process of MMCs in China is briefly summarized. The key technological breakthroughs in the main preparation methods of MMCs, such as in-situ synthesis, stirring casting, powder metallurgy, and pressure infiltration, are introduced. Typical engineering application cases of MMCs that promote equipment upgrading are listed. The development trend of MMCs in the next five to ten years is prospected. In view of the challenges posed to material technology by the development of equipment technology in the field of national defense and national economy, the development opportunities and prospects of MMCs in the civil-military dual-use market are analyzed. Moreover, to overcome the deficiency of industrialization technology and industrial environment, development suggestions are put forward, including consolidating national industrialization platforms and talent cultivation bases, increasing national investment, speeding up the construction of standards and database systems, and developing low-cost and high-quality material preparation technology.

关键词

金属基复合材料 / 产业化应用 / 装备发展 / 材料制备

Keywords

metal matrix composites / industrialized application / equipment development / materials preparation

引用本文

导出引用
武高辉, 匡泽洋. 装备升级换代背景下金属基复合材料的发展机遇和挑战. 中国工程科学. 2020, 22(2): 79-90 https://doi.org/10.15302/J-SSCAE-2020.02.012

参考文献

[1]
武高辉. 金属基复合材料性能设计——创新性思维的尝试 [J]. 中国材料进展, 2015, 34(6): 432–438. Wu G H. The development trend of metal matrix composites: Design of performance [J]. Materials China, 2015, 34 (6): 432–438.
[2]
张荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势 [J]. 中国材料进展, 2010, 29(4): 1–7. Zhang D, Zhang G D, Li Z Q. The current state and trend of metal matrix composites [J]. Materials China, 2010, 29(4): 1–7.
[3]
Researchmoz Global Pvt Ltd. Metal matrix composites (MMC) market for ground transportation, electronics/thermal management, aerospace, and other end-users – Global industry analysis, size, share, growth, trends and forecast, 2013–2019 [R]. New York: Researchmoz Global Pvt Ltd, 2014.
[4]
America’s Office of Naval Research. 2019 Navy ManTech project book [R]. Virginia: America’s Office of Naval Research, 2019.
[5]
Kumar P A, Rohatgi P, Weiss D. 50 years of foundry-produced metal matrix composites and future opportunities [J]. International Journal of Metalcasting, 2019 (9): 1–27.
[6]
韩圭焕, 武高辉. 蔡–希尔失效判据在W/420/Cu复合材料中的实 验研究 [J]. 哈尔滨工业大学学报, 1983, 15(3): 79–91. Han G H, Wu G H. Experimental observations on the Tsai-Hill failure criteria in W/420/Cu composite material [J]. Journal of Harbin Institute of Technology, 1983, 15(3): 79–91.
[7]
于琨, 徐宏清, 孙长义, 等. 硼/铝型材的研制 [J]. 航空学报, 1985, 6(3): 291–294. Yu K, Xu H Q, Sun C Y, et al. Fabrication of boron/aluminum shapes [J]. Acta Aeronautica ET Astronautica Sinica, 1985, 6(3): 291–294.
[8]
耿林, 王桂松, 郑镇洙, 等. SiCW/Al高温高速变形规律及其应用 [C]. 西安: 西部大开发科教先行与可持续发展–中国科协2000 年学术年会文集, 2000. Geng L, Wang G S, Zheng Z Z, et al. High temperature and highspeed deformation rule and application of SiCW/Al [C]. Xi’an: Antecedence of Science and Education and Sustainable Development in China Western Development – Proceedings of CAST Annual Conference 2000, 2000.
[9]
王秀芳, 陈苏, 武高辉. 仪表级、光学级复合材料研究新进展 [C]. 哈尔滨: 2005年惯性器件材料与工艺学术研讨暨技术交流 会论文摘要集, 2005. Wang X F, Chen S, Wu G H. Progress in the research of instrument and optical-grade composite materials [C]. Harbin: Abstracts of 2005 Inertial Devices Materials and Technology Academic Seminar and Technical Exchange Conference, 2005.
[10]
武高辉, 张云鹤, 陈国钦, 等. 碳纤维增强铝基复合材料及其构 件的空间环境特性 [J]. 载人航天, 2012, 18(1): 73–82. Wu G H, Zhang Y H, Chen G Q, et al. Spatial environment properties of carbon fiber reinforced aluminum matrix composites and their components [J]. Manned Spaceflight, 2012, 18(1): 73–82.
[11]
张宇, 王小美, 葛禹锡, 等. 原位合成技术制备金属基复合材料 的研究进展 [J]. 热加工工艺, 2014, 43(24): 23–26. Zhang Y, Wang X M, Ge Y X, et al. Research progress of metal-matrix composite fabricated by in-situ synthesis [J]. Hot Working Technology, 2014, 43(24): 23–26.
[12]
耿林, 倪丁瑞, 郑镇洙. 原位自生非连续增强钛基复合材料的研 究现状与展望 [J]. 复合材料学报, 2006, 23(1): 1–11. Geng L, Ni D R, Zheng Z Z. Current status and outlook of in situ discontinuously reinforced titanium matrix composites [J]. Acta Materiae Compositae Sinica, 2006, 23(1): 1–11.
[13]
孔亚茹, 郭强, 张荻. 颗粒增强铝基复合材料界面性能的研究 [J]. 材料导报, 2015, 29(9): 34–43, 49. Kong Y R, Guo Q, Zhang D. Review on interfacial properties of particle-reinforced aluminum matrix composites [J]. Materials Review, 2015, 29(9): 34–43, 49.
[14]
武高辉, 河野纪雄, 高桥恒夫, 等. 熔融液态金属的自排气压力 浸渗浸入过程 [C]. 东京: 轻金属学会第81回秋期大会讲演概要 集, 1991.
[15]
武高辉. 自排气压力浸渗法制备颗粒增强复合材料的复合化过 程解析 [J]. 轻金属, 1993, 43(1): 20–25.
[16]
武高辉, 乔菁, 姜龙涛. Al及其复合材料尺寸稳定性原理与稳定 化设计研究进展 [J]. 金属学报, 2019, 55(1): 33–44. Wu G H, Qiao J, Jiang L T. Research progress on principle of dimensional stability and stabilization design of Al and its composites [J]. Acta Metallurgica Sinica, 2019, 55(1): 33–44.
[17]
中华人民共和国国务院. 国家中长期科学和技术发展规划纲要 (2006—2020年)[EB/OL]. (2006-02-09) [2019-08-11]. http:// www.gov.cn/gongbao/content/2006/content_240244.htm. State Council of the People’s Republic of China. The national medium- and long-term program for science and technology development (2006–2020) [EB/OL]. (2006-02-09) [2019-08-11]. http:// www.gov.cn/gongbao/content/2006/content_240244.htm.
[18]
Li J W, Wang X T , Qiao Y, et al. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites [J]. Scripta Materialia, 2015, 109(1): 72–75.
[19]
武高辉. 金属基复合材料发展的挑战与机遇 [J]. 复合材料学报, 2014, 31(5): 1228–1237. Wu G H. Development challenge and opportunity of metal matrix composites [J]. Acta Materiae Compositae Sinica, 2014, 31(5): 1228–1237.
[20]
温诗铸, 黄平, 田煜, 等. 摩擦学原理 [M]. 北京: 清华大学出版 社, 2018. Wen S Z, Huang P, Tian Y, et al. Principles of tribology [M]. Beijing: Tsinghua University Press, 2018.
[21]
中华人民共和国国务院办公厅. 能源发展战略行动计划 (2014—2020年)[EB/OL]. (2014-11-19) [2019-08-11]. http:// www.gov.cn/xinwen/2014-11/19/content_2780748.htm. General Office of the State Council of the People’s Republic of China. Energy development strategy action plan (2014–2020) [EB/OL]. (2014-11-19) [2019-08-11]. http://www.gov.cn/xinwen/2014-11/19/content_2780748.htm.
[22]
武高辉, 姜龙涛, 陈国钦, 等. 金属基复合材料界面反应控制研 究进展 [J]. 中国材料进展, 2012, 31(7): 51–58. Wu G H, Jiang L T, Cheng G Q, et al. Research progress on the control of interfacial reaction in metal matrix composites [J]. Rare Metals Letters, 2012, 31(7): 51–58.
[23]
黄浩, 王敏涓, 李虎, 等. 连续SiC纤维增强钛基复合材料研制 [J]. 航空制造技术, 2018, 61(14): 26–36. Huang H, Wang M J, Li H, et al. Preparation of SiC fibers reinforced titanium matrix composites [J]. Aeronautical Manufacturing Technology, 2018, 61(14): 26–36.
[24]
杨延清, 罗贤, 黄斌, 等. SiC纤维增强Ti基复合材料的界面反应 规律 [J]. 中国体视学与图像分析, 2016, 21(1): 58–65. Yang Y Q, Luo X, Huang B, et al. Characterizing interfacial reaction of SiC fibers-reinforced titanium-matrix composites [J]. Chinese Journal of Stereology and Image Analysis, 2016, 21(1): 58–65.
[25]
王玉敏, 张国兴, 张旭, 等. 连续SiC纤维增强钛基复合材料研究 进展 [J]. 金属学报, 2016, 52(10): 1153–1170. Wang Y M, Zhang G X, Zhang X, et al. Advances in SiC fiber reinforced titanium matrix composites [J]. Acta Metallurgica Sinica, 2016, 52(10): 1153–1170.
[26]
田君, 李文芳, 韩利发, 等. 镁基复合材料的研究现状及发展 [J]. 材料导报, 2009, 23(17): 71–74. Tian J, Li W F, Han L F, et al. Research and development of magnesium matrix composites [J]. Materials Review, 2009, 23(17): 71–74.
[27]
宋美慧. Cf /Mg复合材料组织和力学性能及热膨胀二维各向同 性设计 [D]. 哈尔滨: 哈尔滨工业大学(博士学位论文), 2010. Song M H. Microstructure and mechanical properties of Cf /Mg composites and two-dimensional isotropic design for thermal expansion [D]. Harbin: Harbin Institute of Technology (Doctoral dissertation), 2010.
[28]
杨文澍, 武高辉, 肖瑞, 等. 石墨烯/铝复合材料的研究现状及应 用展望 [J]. 新材料产业, 2014 (11): 20–23. Yang W S, Wu G H, Xiao R, et al. Research status and application prospect of graphene/aluminum composites [J]. Advanced Materials Industry, 2014 (11): 20–23.
[29]
王剑桥, 雷卫宁, 薛子明, 等. 石墨烯增强金属基复合材料的制 备及应用研究进展 [J]. 材料工程, 2018, 46(12): 18–27. Wang J Q, Lei W N, Xue Z M, et al. Research progress on synthesis and application of graphene reinforced metal matrix composites [J]. Journal of Materials Engineering, 2018, 46(12): 18–27.
[30]
Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345(6203): 1455–1456.
[31]
Xiong D B, Cao M, Guo Q, et al. Graphene-and-copper artificial nacre fabricated by a preform impregnation process: Bioinspired strategy for strengthening-toughening of metal matrix composite [J]. ACS Nano, 2015, 9(7): 6934–6943.
[32]
Huang L J, Geng L, Peng H X, et al. Room temperature tensile fracture characteristics of in situ TiBw/Ti6Al4V composites with a quasi-continuous network architecture [J]. Scripta materialia, 2011, 64(9): 844–847.
[33]
卢秉恒, 李涤尘. 增材制造(3D打印)技术发展 [J]. 机械制造与 自动化, 2013, 42(4): 1–4. Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology [J]. Machine Building & Automation, 2013, 42(4): 1–4.
[34]
武高辉. 金属基复合材料设计引论 [M]. 北京: 科学出版社, 2016. Wu G H. Introduction to the design of metal matrix composites [M]. Beijing: China Science Publishing & Media Ltd., 2016.
[35]
Barsoum M W. The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates [J]. Progress in Solid State Chemistry, 2000, 28(1–4): 201–281.
[36]
Wu G H, Zhou C, Zhang Q, et al. Decomposition of ZrW2O8 in Al matrix and the influence of heat treatment on ZrW2O8/Al–Si thermal expansion [J]. Scripta Materialia, 2015, 96(1): 29–32.
基金
中国工程院咨询项目“新兴产业发展战略研究( 2035)” (2018-ZD-12)
PDF(3890 KB)

Accesses

Citation

Detail

段落导航
相关文章

/