
低轨卫星导航增强技术——机遇与挑战
Low Earth Orbiter (LEO) Navigation Augmentation: Opportunities and Challenges
在我国北斗卫星导航系统(北斗系统)初步实现全球能力覆盖的背景下,低轨卫星导航增强(LEO-NA)技术因其易于与北斗系统协同来提高全球自主导航精度、拓展全球卫星导航应用市场的巨大潜力而成为研究热点。本文梳理了发展导航增强技术的现实需求,分析了导航增强技术以及LEO-NA技术的发展现状,重点介绍了我国“珞珈一号”关键技术在轨验证的进展情况。在此基础上,研判了LEO-NA系统未来发展面临的技术挑战,如导航增强频率的兼容互操作、通信/导航信号一体化设计、低轨卫星星座管控、高动态导航增强信号捕获与跟踪、与现有导航系统的融合等。研究提出,针对我国发展LEO-NA技术的迫切需求,可着重在以下方面开展工作:加强系统顶层设计并充分利用现有资源,注重LEO-NA系统与北斗系统的协同增效;促进通信、导航、遥感功能融合,分步骤分层次构建天基信息实时服务系统;将卫星工程与地面基础设施统一规划考虑,实行星地一体化建设。
As China’s Beidou satellite navigation system (Beidou system) achieves a primary global coverage, the low earth orbiter navigation augmentation (LEO-NA) technique becomes a hot research topic, since it can easily cooperate with the Beidou system to improve the precision for global autonomous navigation and to extend the application market of the global navigation satellite systems (GNSS). This paper analyzed the demand for and status of the LEO-NA technique, and focused on the in-orbit validation of key techniques for the “Luojia-1A” satellite. It also studied the challenges faced by the LEO-NA system, including interoperability of signal frequencies after navigation augmentation, integrated design of the communication and navigation signals, control and management of the LEO constellations, acquisition and tracking of the high-dynamic augmented signals, and integration with existing GNSS systems. Considering the pressing demand for the LEO-NA techniques, the following suggestions are proposed, including enhancing the top-level design of the LEO-NA system while focusing on the synergy of the LEO-NA and Beidou systems; promoting the integration of the communications, navigation, and remote sensing functions, and building the space-based real-time service system in a stepwise and stratified manner; and planning and constructing the satellite project and the ground infrastructure in an integrated manner.
卫星导航增强 / 低轨卫星星座 / 北斗系统 / 协同建设 / 星地一体化
satellite navigation augmentation / low earth orbiter constellation / Beidou system / collaborative development / satellite–ground integration
[1] |
郭树人, 蔡洪亮, 孟轶男, 等. 北斗三号导航定位技术体制与服 务性能 [J]. 测绘学报, 2019, 48(7): 810–821. Guo S R, Cai H L, Meng Y N, et al. BDS-3 RNSS technical characteristics and service performance [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7): 810–821.
|
[2] |
杨元喜. 综合PNT体系及其关键技术 [J]. 测绘学报, 2016, 45(5): 505–510. Yang Y X. Concepts of comprehensive PNT and related key technologies [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5): 505–510.
|
[3] |
Parkinson B W. Assured PNT for our future: PTA [EB/OL]. (2014- 09-01) [2018-08-21]. https://www.gpsworld.com/assured-pnt-forour-future-pta/.
|
[4] |
杨元喜. 弹性PNT基本框架 [J]. 测绘学报, 2018, 47(7): 893–898. Yang Y X. Resilient PNT concept frame [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7): 893–898.
|
[5] |
李德仁, 沈欣, 李迪龙, 等. 论军民融合的卫星通信、遥感、导航 一体天基信息实时服务系统 [J]. 武汉大学学报(信息科学版), 2017, 42(11): 1501–1505. Li D R, Shen X, Li D L, et al. On civil-military integrated spacebased real-time information service system [J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1501– 1505.
|
[6] |
李德仁, 沈欣, 龚健雅, 等. 论我国空间信息网络的构建 [J]. 武 汉大学学报(信息科学版), 2015, 40(6): 711–715, 766. Li D R, Shen X, Gong J Y, et al. On construction of China’s space information network [J]. Geomatics and Information science of Wuhan University, 2015, 40(6): 711–715, 766.
|
[7] |
郭树人, 刘成, 高为广, 等. 卫星导航增强系统建设与发展 [J]. 全 球定位系统, 2019, 44(2): 1–12. Guo S R, Liu C, Gao W G, et al. Construction and development of satellite navigation augmentation systems [J]. GNSS World of China, 2019, 44(2): 1–12.
|
[8] |
陈锐志, 王磊, 李德仁, 等. 导航与遥感技术融合综述 [J]. 测绘 学报, 2019, 48(12): 1507–1522. Chen R Z, Wang L, Li D R, et al. A survey on the fusion of the navigation and the remote sensing techniques [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1507–1522.
|
[9] |
王磊, 陈锐志, 李德仁, 等. 珞珈一号低轨卫星导航增强系统 信号质量评估 [J]. 武汉大学学报(信息科学版), 2018, 43(12): 2191–2196. Wang L, Chen R Z, Li D R, et al. Quality assessment of the LEO navigation augmentation signals from Luojia-1A satellite [J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2191–2196.
|
[10] |
Shi C, Zheng F, Lou Y D, et al. National BDS augmentation service system (NBASS) of China: Progress and assessment [J]. Remote Sensing, 2017, 9(8): 1–16.
|
[11] |
赵爽. 国外卫星导航星基增强系统发展概况 [J]. 卫星应用, 2013 (5): 58–61. Zhao S. The development on satellite-based augmentation system in foreign countries [J]. Satellite Application, 2013 (5): 58–61.
|
[12] |
Bar-Sever Y, Young L, Stocklin F, et al. The NASA global differential GPS system (GDGPS) and the TDRSS augmentation service for satellites (TASS) [C]. Noorwijk: ESA 2nd Workshop on Navigation User Equipment, 2004.
|
[13] |
Visser I H. Omnistar HP worldwide positioning service [J]. Interexpo Geo-Siberia, 2006, 1(2): 108–116.
|
[14] |
Chen X M, Allison T, Cao W, et al. Trimble RTX, An innovative new approach for network RTK [C]. Portland: ION GNSS+ 2011, 2011.
|
[15] |
郭四清, 张丁. 星基增强系统“中国精度”与CORS网的对比分析 [J]. 地理空间信息, 2016, 14(5): 1–4. Guo S Q, Zhang D. Comparison analysis of satellite-based augmentation system “China CM” and CORS [J]. Geospatial Information, 2016, 14(5): 1–4.
|
[16] |
Jiang W, Li Y, Rizos C. Locata-based precise point positioning for kinematic maritime applications [J]. GPS Solutions, 2014, 19(1): 117–128.
|
[17] |
Montillet J-P, Roberts G W, Hancock C, et al. Deploying a Locata network to enable precise positioning in urban canyons [J]. Journal of Geodesy, 2009, 83(2): 91–103.
|
[18] |
Zhou Z B, Yang L, Li Y. An adaptive dual Kalman filtering algorithm for Locata/GPS/INS integrated navigation [C]. Wuhan: China Satellite Navigation Conference (CSNC) 2013 Proceedings, 2013.
|
[19] |
Choy S, Harima K, Li Y, et al. GPS precise point positioning with the Japanese Quasi-Zenith satellite system LEX augmentation corrections [J]. Journal of Navigation, 2015, 68(4): 1–15.
|
[20] |
杨宇飞, 杨元喜, 徐君毅, 等. 低轨卫星对导航卫星星座轨道 测定的增强作用 [J]. 武汉大学学报(信息科学版), 2020, 45(1): 46–52. Yang Y F, Yang Y X, Xu J Y, et al. Navigation satellites orbit determination with the enhancement of low earth orbit satellites [J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 46–52.
|
[21] |
曾添, 隋立芬, 贾小林, 等. 风云3C增强北斗定轨试验结果与分 析 [J]. 测绘学报, 2017, 46(7): 824–833. Zeng T, Sui L F, Jia X L, et al. Results and analysis of BDS precise orbit determination with the enhancement of Fengyun-3C [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(7): 824–833.
|
[22] |
Enge P K, Talbot N C, San J. Method and reciever using a low earth orbiting satellite signal to augment the global positioning system: US5812961 [P/OL] 1995-12-28 [2019-06-01]. https:// patents.google.com/patent/US5812961A/en.
|
[23] |
Whelan D, Enge P, Gutt G M. iGPS: Integrated nav & com augmentation of GPS [C]. Stanford: 2010 PNT Challenges and Opportunities Symposium, 2010.
|
[24] |
Tan Z Z, Qin H L, Cong L, et al. New method for positioning using IRIDIUM satellite signals of opportunity [J]. IEEE Access, 2019 (7): 83412–83423.
|
[25] |
秦红磊, 谭滋中, 丛丽, 等. 基于铱星机会信号的定位技术研究 [J]. 北京航空航天大学学报, 2019, 45(9): 1691–1699. Qin H L, Tan Z Z, Cong L, et al. Positioning technology based on IRIDIUM signals of opportunity [J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1691–1699.
|
[26] |
Reid T, Neish A, Walter T, et al. Leveraging commercial broadband LEO constellations for navigation [C]. Portland: ION GNSS+ 2016, 2016.
|
[27] |
Reid T, Walter T, Enge P, et al. Orbital representations for the next generation of satellite-based augmentation systems [J]. GPS Solutions, 2016, 20(4): 737–750.
|
[28] |
刘仁甫, 田世伟, 李广侠, 等. Iridium/GPS导航增强系统及性能 仿真 [C]. 上海: 第二届中国卫星导航学术年会电子文集, 2011. Liu R F, Tian S W, Li G X, et al. Iridium/GPS navigation enhancement system and performance simulation [C]. Shanghai: Electronic Collection of the 2nd China Satellite Navigation Conference, 2011.
|
[29] |
杨波. 低轨卫星增强导航技术研究 [D]. 成都: 电子科技大学(硕 士学位论文), 2017. Yang B. Research on enhanced navigation technologies based on low earth orbit satellite [D]. Chengdu: University of Electronic Science and Technology of China (Master’s thesis), 2017.
|
[30] |
卓永宁. 低轨小卫星移动通信与定位关键技术研究 [D]. 成都: 电子科技大学(博士学位论文), 2006. Zhuo Y N. Research on the key technologies for LEO small satellite communication and positioning [D]. Chengdu: University of Electronic Science and Technology of China (Doctoral dissertation), 2006.
|
[31] |
常江, 田世伟, 李广侠, 等. iGPS抗干扰性能研究 [C]. 上海: 第二 届中国卫星导航学术年会电子文集, 2011. Chang J, Tian S W, Li G X, et al. Research on anti-interference performance of iGPS [C]. Shanghai: Electronic Collection of the 2nd China Satellite Navigation Conference, 2011.
|
[32] |
田世伟, 李广侠, 常江, 等. 基于铱星增强的GPS系统RAIM性能 [J]. 解放军理工大学学报(自然科学版), 2013, 14(3): 237–241. Tian S W, Li G X, Chang J, et al. Receiver autonomous integrity monitoring in iridium-augmented GPS [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2013, 14(3): 237–241.
|
[33] |
Ge H B, Li B F, Ge M R, et al. Initial assessment of precise point positioning with LEO enhanced global navigation satellite systems (LeGNSS) [J]. Remote Sensing, 2018, 10(7): 984.
|
[34] |
Li X X, Ma F J, Li X, et al. LEO constellation-augmented multiGNSS for rapid PPP convergence [J]. Journal of Geodesy, 2019,93(1): 749–764.
|
[35] |
方善传, 杜兰, 周培元, 等. 低轨导航增强卫星的轨道状态型星 历参数设计 [J]. 测绘学报, 2016, 45(8): 904–910. Fang S C, Du L, Zhou P Y, et al. Orbital list ephemerides design of LEO navigation augmentation satellite [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8): 904–910.
|
[36] |
Xie X, Geng T, Zhao Q, et al. Design and validation of broadcast ephemeris for low earth orbit satellites [J]. GPS Solutions, 2018, 22(2): 54.
|
[37] |
Wang L, Chen R Z, Li D R, et al. Initial assessment of the LEO based navigation signal augmentation system from Luojia-1A satellite [J]. Sensors, 2018, 18(11): 3919.
|
[38] |
蒙艳松. 鸿雁星座低轨导航增强系统系统进展及展望 [C]. 北 京: 第十届中国卫星导航年会, 2019. Meng Y S. The progress and future of the Hongyan LEO navigation augmentation system [C]. Beijing: The 10th China Satellite Navigation Conference, 2019.
|
[39] |
Wang L, Chen R Z, Xu B Z, et al. The challenges of LEO based navigation augmentation system—Lessons learned from Luojia1A satellite [C]. Beijing: The 10th China Satellite Navigation Conference, 2019.
|
[40] |
Rabinowitz M. A differential carrier-phase navigation system combining GPS with LEO for rapid resolution of integer cycle ambiguities [D]. Stanford: University of Stanford (Doctoral dissertation), 2001.
|
/
〈 |
|
〉 |