
我国自由电子激光技术发展战略研究
Development Strategy of Free Electron Laser Technology in China
自由电子激光(FEL)光源是一种基于电子直线加速器的大型科研装置,广泛应用于凝聚态物理、先进材料与表面物理、原子分子物理、化学、生物等基础科学研究。FEL 技术的进步将促使光源向更高功率和更短波长发展,以满足日益增长的用户需求。本文从FEL 的技术特点出发,论述了技术发展的必要性,研判了现阶段国内外FEL 技术发展现状并凝练我国领域发展面临的问题。研究提出了我国FEL 技术的发展思路,在2035 年前着力在长波波段FEL、X 射线FEL、新型FEL、基于FEL 的极紫外(EUV)光刻光源等方面取得突破。研究建议:制定科学发展战略、保障科研攻关实施,加强基础投入、提高自主创新水平,加强多方合作、促进科技成果转化,促进研究与应用结合、推动市场应用,加强科技人才培养,以此推进我国FEL 领域的稳健发展。
Free electron laser (FEL) is a large-scale scientific research device based on electron linear accelerator and has been widely used in basic scientific research such as condensed matter physics, advanced materials and surface physics, atomic and molecular physics, chemistry, and biology. The advancement of FEL technology will promote the light sources to develop towards higher power and shorter wavelength to satisfy the increasing demands of users. This study introduces the necessity of development based on the characteristics of the FEL technology and summarizes the current development status of the technology in China and abroad. It also analyzes the existing problems in its development in China and proposes ideas and goals for the development of FEL technology in China. By 2035, China should focus on making breakthroughs in long-wave FEL, X-ray FEL, new FEL, and FEL-based extreme ultraviolet (EUV) lithography light source technologies. Based on the research and analysis, this study proposes some suggestions for the steady and healthy development of the FEL technology in China, including making scientific development strategies, raising investment in fundamental research to promote independent innovation, strengthening multi-party cooperation to promote the transformation of scientific and technological achievements, promoting market application, and strengthening personnel training.
自由电子激光 / 红外太赫兹光源 / 极紫外光刻光源 / X射线自由电子激光
free electron laser / infrared-terabertz FEL / extreme ultraviolet-FEL / X-ray FEL
[1] |
金光齐, 黄志戎, 瑞安·林德伯格. 同步辐射与自由电子激 光——相干X射线产生原理 [M]. 北京: 北京大学出版社, 2018. Kim K J, Huang Z R, Lindberg R. Synchrotron radiation and free-electron lasers: Principles of coherent X-ray generation [M]. Beijing: Peking University Press, 2018.
|
[2] |
Madey J M. Stimulated emission of bremsstrahlung in a periodic magnetic field [J]. Journal of Applied Physics, 1971, 42: 1906– 1971.
|
[3] |
Green B, Kovalev S, Asgekar V, et al. High-field high-repetition rate sources for the coherent THz control of matter [J]. Scientific Reports, 2016, 6: 1–9.
|
[4] |
Feng C, Deng H X. Review of fully coherent free-electron lasers [J]. Nuclear Science and Techniques, 2018, 29(11): 1–23.
|
[5] |
Yabashi M, Tanaka H. The next ten years of X-ray science [J]. Nature Photon, 2017, 11(1): 12–14.
|
[6] |
赵振堂, 冯超. X射线自由电子激光 [J]. 物理, 2018, 47(8): 481– 490. Zhao Z T, Feng C. X-ray free electron lasers [J]. Physics, 2018, 47(8): 481–490.
|
[7] |
Carr G L, Martin M C, McKinney W R, et al. High-power terahertz radiation from relativistic electrons [J]. Nature, 2002, 420(6912): 153–156.
|
[8] |
Vinokurov N, Arbuzov V S, Chernov K N , et al. Novosibirsk high-power THz FEL facility [C]. Saint Petersburg: 2016 International Conference Laser Optics, 2016.
|
[9] |
Bostedt C, Boutet S, Fritz D M, et al. Linac coherent light source: The first five years [J]. Reviews of Modern Physics, 2016, 88(1): 1–10.
|
[10] |
Weise H, Decking W. Commissioning and first lasing of the European XFEL [C]. Santa Fe: 38th International Free Electron Laser Conference, 2017.
|
[11] |
Milne C, Schietinger T, Aiba M, et al. SwissFEL: The Swiss X-ray free electron laser [J]. Applied Sciences, 2017, 7(7): 720.
|
[12] |
Ishikawa T, Aoyagi H, Asaka T, et al. A compact X-ray freeelectron laser emitting in the sub-ngstrm region [J]. Nature Photonics, 2012, 6(8):540–544.
|
[13] |
Kang H S, Min C K, Heo H, et al. Hard X-ray free-electron laser with femtosecond-scale timing jitter [J]. Nature Photonics, 2017, 11(11): 708–714.
|
[14] |
Zhao Z Y, Li H T, Jia Q K. Effect of cavity length detuning on the output characteristics for the middle infrared FEL oscillator of FELiChEM [J]. Chinese Physics C, 2017, 41(10): 1–6.
|
[15] |
Jin X, Li M, Xu Z. Experiment study on the CAEP FIR-FEL [J]. Chinese Physics C, 2006, 30(1): 96–98.
|
[16] |
黎明, 杨兴繁, 许州, 等. 太赫兹自由电子激光的受饱和实验 [J]. 物理学报, 2018, 67(8): 1–9. Li M, Yang X F , Xu Z, et al. Experimental study on the stimulated saturation of terahertz free electron laser [J]. Acta Physica Sinica, 2018, 67(8): 1–9.
|
[17] |
Zhao Z T, Wang D, Chen J H, et al. First lasing of an echo-enabled harmonic generation free-electron laser [J]. Nature Photonics, 2012, 6(6): 360–363.
|
[18] |
Wang H L, Yu Y, Chang Y, et al. Photodissociation dynamics of H2O at 111.5 nm by a vacuum ultraviolet free electron laser [J]. The Journal of Chemical Physics, 2018, 148(12): 1–15.
|
[19] |
Zhao Z T, Wang D, Gu Q, et al. Status of the SXFEL project [J]. AAPPS Bulletin, 2016, 26(1): 12–24.
|
[20] |
Zhu Z Y, Zhao Z, Wang D, et al. SCLF: An 8-GeV CW SCRF linac-based X-ray FEL facility in Shanghai [C]. Santa Fe: Proceedings of the 38th International Free-Electron Laser Conference, 2017.
|
[21] |
刘国治. 关于生物神经系统物理机理的若干猜想 [J]. 科学通报, 2018, 63(36): 16–17. Liu G Z. The conjectures on physical mechanism of vertebrate nervous system [J]. Chinese Science Bulletin, 2018, 63(36): 16– 17.
|
[22] |
Bonifacio R, Fares H, Ferrario M, et al. Design of a sub-angstrom compact free-electron laser source [J]. Optics Communications, 2017, 382(1): 58–63.
|
[23] |
Kawata H. Challenges to realize the EUV-FEL high power light source — Present status on the EUV-FEL R&D activities [C]. Berkeley: 2017 International Workshop on EUV Lithography, 2017.
|
/
〈 |
|
〉 |