超快超强激光及其科学应用发展趋势研究

刘军, 曾志男, 梁晓燕, 冷雨欣, 李儒新

中国工程科学 ›› 2020, Vol. 22 ›› Issue (3) : 42-48.

PDF(383 KB)
PDF(383 KB)
中国工程科学 ›› 2020, Vol. 22 ›› Issue (3) : 42-48. DOI: 10.15302/J-SSCAE-2020.03.007
我国激光技术与应用2035 发展战略研究
Orginal Article

超快超强激光及其科学应用发展趋势研究

作者信息 +

Development Trend of Ultrafast and Ultraintense Lasers and Their Scientific Application

Author information +
History +

摘要

超快超强激光兼具超快时域特性和超高峰值功率特性,为人类在实验室中创造出了前所未有的超快时间、超高强场、超高温度和超高压力等极端物理条件,成为用于拓展人类认知的前沿基础科学研究最重要的工具之一。本文从超快激光和超强激光的应用与发展需求出发,系统调研了国内外研究和科学应用的现状,提出了我国超快激光和超强激光的发展思路与目标以及为实现这些目标需要重点发展的相关方法和技术。针对超高峰值功率和高重复频率超强激光面向未来的重要方向,分析了我国分阶段发展的重点内容,突出了相关技术与配套元器件研究的重要性。此外,在注重基础研究、多方面吸引和培育人才、加强国际合作、促进产业化等方面提出了超快超强激光发展的措施建议,以期为我国激光技术与科学应用的稳步发展提供方向参照。

Abstract

Ultrafast and ultraintense lasers have ultrafast temporal and ultraintense focal intensity properties. They can create unprecedentedly extreme experimental conditions with ultrahigh time resolution, temperature, and pressure as well as ultrahighstrength field. The ultrafast and ultraintense laser is one of the important tools for frontier fundamental research meant for extending the knowledge of mankind. This paper starts with the analysis of the application and development demands of the ultrafast and ultraintense lasers and then systematically investigates the research status of these lasers in China and abroad. Based on this, the developing routes and targets of ultrafast and ultraintense lasers as well as the related technologies needed for achieving these targets are proposed. Particularly, we proposed the respective key steps for developing ultraintense lasers with ultrahigh peak power and those with high repetition frequency, and emphasized the study of related technologies and ancillary components. Furthermore, several suggestions are proposed for the development of ultrafast and ultraintense lasers in China, including strengthening fundamental researches, improving personnel training, enhancing international cooperation, and promoting market application, hoping to provide references for the steady development of China’s laser technologies.

关键词

超快超强激光 / 飞秒激光 / 阿秒激光 / 拍瓦激光 / 发展趋势

Keywords

ultraintense and ultrashort laser / femtosecond laser / attosecond laser / petawatt laser / development trend

引用本文

导出引用
刘军, 曾志男, 梁晓燕. 超快超强激光及其科学应用发展趋势研究. 中国工程科学. 2020, 22(3): 42-48 https://doi.org/10.15302/J-SSCAE-2020.03.007

参考文献

[1]
Strickland D, Mourou G. Compression of amplified chirped optical pulses [J]. Optics Communications, 1985, 56(3): 219–221.
[2]
Krausz F, Ivanov M. Attosecond physics [J]. Review of Modern Physics, 2009, 81(1): 163–234.
[3]
Kühn S, Dumergue M, Kahaly S, et al. The ELI-ALPS facility: The next generation of attosecond sources [J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50(13): 1–39.
[4]
Popmintchev T, Chen M, Popmintchev D, et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers [J]. Science, 2012, 336: 1287–1291.
[5]
Saule T, Heinrich S, Schötz J, et al. High-flux ultrafast extreme-ultraviolet photoemission spectroscopy at 18.4 MHz pulse repetition rate [J]. Nature Communications, 2019, 10(1): 1–10.
[6]
余永, 李钦明, 杨家岳, 等. 大连极紫外相干光源 [J]. 中国激光, 2019, 46(1): 35–42. Yu Y, Li Q M, Yang J Y, et al. Dalian extreme ultraviolet coherent light source [J]. Chinese Journal of Lasers, 2019, 46(1): 35–42.
[7]
Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide [J]. High Power Laser Science and Engineering, 2019, 7(3): 1–54.
[8]
Gales S, Tanaka K A, Balabanski D L, et al. The extreme light infrastructure-nuclear physics (ELI-NP) facility: New horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams [J]. Reports on Progress in Physics, 2018, 81(9): 1–31.
[9]
Papadopoulos D N, Zou J P, Le Blanc C, et al. The Apollon 10 PW laser: Experimental and theoretical investigation of the temporal characteristics [J]. High Power Laser Science and Engineering, 2016, 4(E34): 127–133.
[10]
Hernandez-Gomez C, Blake S P, Chekhlov O, et al. The vulcan 10 PW project [C]. San Francisco: The Sixth International Conference on Inertial Fusion Sciences and Applications, 2009.
[11]
Shaykin A, Kostyukov I, Sergeev A, et al. Prospects of PEARL 10 and XCELS laser facilities [J]. The Review of Laser Engineering, 2014, 42:141–144.
[12]
Sung J H, Lee H W, Yoo J Y, et al. 4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz [J]. Optics Letters, 2017, 42(11): 2058–2061.
[13]
Zeng X M, Zhou K N, Zuo Y L, et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification [J]. Optics Letters, 2017, 42(10): 2014–2017.
[14]
Li W Q, Gan Z B, Yu L H, et al. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility [J]. Optics Letters, 2018, 43(22): 5681–5684.
[15]
Yu L H, Liang X Y, Xu L, et al. Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm [J]. Optics Letters, 2015, 40(14): 3412–3415.
[16]
Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators [J]. Nature Photonics, 2013, 7: 258–261.
[17]
Breitkopf S, Eidam T, Klenke A, et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities [J]. Light: Science & Applications, 2014, 3(E211): 1–7.
基金
中国工程院咨询项目“我国激光技术与应用 2035 发展战略研究” (2018-XZ-27)
PDF(383 KB)

Accesses

Citation

Detail

段落导航
相关文章

/