空间激光通信技术发展现状及展望

王天枢, 林鹏, 董芳, 刘显著, 马万卓, 付强

中国工程科学 ›› 2020, Vol. 22 ›› Issue (3) : 92-99.

PDF(595 KB)
PDF(595 KB)
中国工程科学 ›› 2020, Vol. 22 ›› Issue (3) : 92-99. DOI: 10.15302/J-SSCAE-2020.03.014
我国激光技术与应用2035 发展战略研究
Orginal Article

空间激光通信技术发展现状及展望

作者信息 +

Progress and Prospect of Space Laser Communication Technology

Author information +
History +

摘要

空间激光通信技术是未来空间宽带信息传输的主要通信技术,具有带宽高、传输快速便捷及成本低的优势,是解决信息传输“最后一千米”的最佳选择。本文旨在系统把握空间激光通信技术的发展脉络,系统梳理了国内外空间激光通信技术在星地、星间、空地、空空等链路的研究与试验验证的发展情况,总结了激光通信技术在捕获跟踪、通信收发、大气补偿和光机设计等方向的关键技术研究热点。在此基础上,面向未来需求,归纳了空间激光通信技术在高速率、网络化、多用途、一体化、多谱段5 个方面的发展趋势。为进一步推动空间激光通信技术研究和产业化的发展,本文从实施基础研究计划、重视核心元器件研发、积极参与国际技术标准的制定以及引导相关产业发展4 个方面提出了发展建议,以期更好地促进我国空间激光通信技术的成果转化和应用。

Abstract

Space laser communication technology is a major communication technology for space broadband information transmission in the future and has the advantages of high bandwidth, fast and convenient transmission, and low cost. It is the best means to cover the“last kilometer” of information transmission. This study aims to systematically understand the development process of the space laser communication technology. It summarizes the development of research and experimental verification of the technology in China and abroad regarding satellite-ground, inter-satellite, space-ground, and inter-space links. The key technologies of laser communication are studied in detail regarding acquisition tracking, communication transceiving, atmospheric compensation, and optomechanical design. Based on this, five future development trends of space laser communication are summarized emphatically, that is, high speed, networking, multi-purpose, integration, and multi-band. To further promote the research and industrialization of the space laser communication technology, this study proposes implementing basic research plans, focusing on the research and development of core components, actively participating in the formulation of international technical standards, and guiding the development of related industries.

关键词

空间激光通信 / 天地一体化信息网络 / 高速率 / 激光组网 / 一对多激光通信

Keywords

space laser communication / space-earth integration network / high speed rate / laser networking / one-to-multiple laser communication

引用本文

导出引用
王天枢, 林鹏, 董芳. 空间激光通信技术发展现状及展望. 中国工程科学. 2020, 22(3): 92-99 https://doi.org/10.15302/J-SSCAE-2020.03.014

参考文献

[1]
姜会林, 安岩, 张雅琳, 等. 空间激光通信现状、发展趋势及关键 技术分析 [J]. 飞行器测控学报, 2015, 34(3): 207-217. Jiang H L, An Y, Zhang Y L, et al. Analysis of the status quo, development trend and key technologies of space laser communication [J]. Journal of spacecraft TT & C Technology, 2015, 34(3): 207-217.
[2]
高铎瑞, 李天伦, 孙悦, 等. 空间激光通信最新进展与发展趋势 [J]. 中国光学. 2018, 11(6): 901-913. Gao D R, Li T L, Sun Y, et al. Latest developments and trends of space laser communication [J]. Chinese Optics, 2018, 11(6): 901-913.
[3]
杨乾远, 孙晖, 马拥华, 等.5G基站前传和中传的无线光通信方 案设计 [J].光通信技术, 2019, 43(9): 23-26. Yang Q Y, Sun H, Ma Y H, et al. Design of free space optical communication scheme for forward and intermediate transmission of 5G base station [J]. Optical Communication Technology, 2019, 43(9): 23-26.
[4]
姜会林, 江伦, 宋延嵩, 等. 一点对多点同时空间激光通信光学 跟瞄技术研究 [J]. 中国激光, 2015, 42(4): 1-9. Jiang H L, Jiang L, Song Y S, et al. Research of optical and apt technology in one-point to multi-point simultaneous space laser communication system [J]. Chinese Journal of Lasers, 2015, 42(4): 1-9.
[5]
姜会林, 付强, 赵义武, 等. 空间信息网络与激光通信发展现状 及趋势 [J]. 物联网学报, 2019, 3(2): 1-8. Jiang H L, Fu Q, Zhao Y W, et al. Development status and trend of space information network and laser communication [J]. Chinese Journal on Internet of Things, 2019, 3(2): 1-8.
[6]
Grein M E, Kerman A J, Dauler E A, et al. Design of a groundbased optical receiver for the lunar laser communications demonstration [C]. Santa Monica: 2011 International Conference on Space Optical Systems and Applications (ICSOS), 2011.
[7]
Boroson D M, Robinson B S, Burianek D A, et al. Overview and status of the lunar laser communications demonstration [C]. Society of Photo-Optical Instrumentation Engineers, 2012.
[8]
The Aerospace Corporation of El Segundo, California. Update on Optical communications and sensor demonstration (OCSD) [EB/ OL]. (2017-11-02)[2020-05-06]. https://www.nasa.gov/feature/ ocsd.
[9]
Fields R, Kozlowski D, Yura H, et al. 5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station [C]. Santa Monica: 2011 International Conference on Space Optical Systems and Applications (ICSOS), 2011.
[10]
Seel S, Kämpfner H, Heine F, et al. Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook [C]. Big Sky: 2011 Aerospace Conference, 2011.
[11]
Tröndle D, Pimentel P M, Rochow C, et al. Alphasat-Sentinel-1A optical inter-satellite links: Run-up for the European data relay satellite system [C]. Society of Photo-Optical Instrumentation Engineers, 2016.
[12]
Arimoto Y, Toyoshima M, Toyoda M, et al. Preliminary result on laser communication experiment using Engineering Test SatelliteVI (ETS-VI) [C]. San Jose: Free-Space Laser Communication Technologies VII, 1995.
[13]
Jono T, Takayama Y, Ohinata K, et al. Demonstrations of ARTEMIS-OICETS inter-satellite laser communications [C]. San Diego: Aiaa International Communications Satellite Systems Conference, 2006.
[14]
Carrasco-Casado A, Takenaka H, Kolev D, et al. LEO-toground optical communications using SOTA (Small Optical TrAnsponder) —Payload verification results and experiments on space quantum communications [J]. Acta Astronautica, 2017, 139: 377-384.
[15]
吴从均, 颜昌翔, 高志良, 等. 空间激光通信发展概述 [J]. 中国 光学, 2013, 6(5): 670-680. Wu C J, Yan C X, Gao Z L, et al. Overview of space laser communications [J]. Chinese Optics, 2013, 6(5): 670-680.
[16]
王岭, 陈曦, 董峰. 空间激光通信光端机发展水平与发展趋势 [J]. 长春理工大学学报(自然科学版), 2016, 39(2): 39-45. Wang L, Chen X, Dong F. Development level and trend for space laser communication optical transceiver [J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2016, 39(2): 39-45.
[17]
吴应明, 刘兴, 罗广军, 等. 空间光通信网络技术的研究进展及 架构体系 [J]. 光通信技术, 2017, 11(12): 46-49. Wu Y M, Liu X, Luo G J, et al. Research progress and structure system of space optical communication network technology [J]. Optical Communication Technology, 2017, 11(12): 46-49.
[18]
任建迎, 孙华燕, 张来线, 等. 空间激光通信发展现状及组网新 方法 [J]. 激光与红外, 2019, 49(2): 143-150. Ren J Y, Sun H Y, Zhang L X, et al. Development status of space laser communication and new method of networking [J]. Laser and Infrared, 2019, 49(2): 143-150.
[19]
王旭. 实践十三号卫星成功发射开启中国通信卫星高通量时代 [J]. 中国航天, 2017 (5): 13. Wang X. The successful launch of Shijian-13 satellite opens the high throughput era of China’s communication satellite [J]. Aerospace China, 2017 (5): 13.
[20]
陈纯毅, 杨华民, 姜会林, 等. 大气光通信中大孔径接收性能分 析与孔径尺寸选择 [J]. 中国激光, 2009, 36(11): 2957-2961. Chen C Y, Yang H M, Jiang H L, et al. Performance analysis of large-aperture receiving and selection of aperture size in atmospheric optical communications [J]. Chinese Journal of Lasers, 2009, 36(11): 2957-2961.
[21]
Zhang X M, Wang T S, Chen J D, et al. Scintillation index reducing based on wide-spectral mode-locking fiber laser carriers in a simulated atmospheric turbulent channel [J]. Optics Letters, 2018, 43 (14): 3421-3424.
[22]
Chen J D, Wang T S, Zhang X M, et al. Free-space transmission system in a tunable simulated atmospheric turbulence channel using a high-repetition-rate broadband fiber laser [J]. Applied Optics, 2019, 58 (10): 2635-2640.
[23]
付强, 姜会林, 王晓曼, 等. 空间激光通信研究现状及发展趋势 [J]. 中国光学, 2012, 5(2): 116-125. Fu Q, Jiang H L, Wang X M, et al. Research status and development trend of space laser communication [J]. Chinese Optics, 2012, 5(2): 116-125.
[24]
Cvijetic N, Qian D Y, Yu J J, et al. 100 Gb/s per-channel freespace optical transmission with coherent detection and MIMO processing [C]. Vienna: 2009 35th European Conference on Optical Communication, 2009.
[25]
Huang H, Xie G D, Yan Y, et al. 100 Tb/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength [J]. Optics Letters, 2014, 39(2): 197-200.
[26]
Esmail M A, Ragheb A, Fathallah H, et al. Experimental demonstration of outdoor 2.2 Tbps super-channel FSO transmission system [C]. Kuala Lumpur: 2016 IEEE International Conference on Communications Workshops (ICC), 2016.
[27]
Esmail M A, Ragheb A, Fathallah H, et al. Investigation and demonstration of high speed full-optical hybrid FSO/fiber communication system under light sand storm condition [J]. IEEE Photonics Journal, 2016, 9(1): 1-12.
[28]
Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing [J]. Nature photonics, 2012, 6(7): 488-496.
[29]
Wang J, Li S, Luo M, et al. N-dimentional multiplexing link with 1.036-Pb/s transmission capacity and 112.6-b/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM polmuxed 26 OAM modes [C]. Cannes: 2014 European Conference on Optical Communication (ECOC), 2014.
[30]
Wang J, Liu J, Lv X, et al. Ultra-high 435-b/s/Hz spectral efficiency using N-dimentional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals [C]. Valencia: 2015 European Conference on Optical Communication (ECOC), 2015.
[31]
Gao S M, Feng S L, Wu Z H, et al. 120 Gb/s high-speed WDMQPSK free-space optical transmission through a 1-km atmospheric channel [J]. Electronics Letters, 2018, 54 (18): 1082–1084.
[32]
Liu X, Wang T, Zhang X, et al. 128 Gb/s free-space laser transmission performance in a simulated atmosphere channel with adjusted turbulence [J]. IEEE Photonics Journal, 2018, 10(2): 1-10.
[33]
Liu X, Wang T, Lin P, et al. Up to 384 Gbit/s based on dense wavelength division multiplexing of 100-GHz channel spacing free space laser transmission performance in a simulated atmosphere channel with adjusted turbulence [J]. Optical Engineering, 2018, 57(10): 1-6.
[34]
姜会林, 胡源, 丁莹, 等. 空间激光通信组网光学原理研究 [J]. 光 学学报, 2012, 32(10): 1-5. Jiang H L, Hu Y, Ding Y, et al. Optical principle research of space laser communication network [J]. Acta Optica Sinica, 2012, 32(10): 1-5.
[35]
吴伟仁, 于登云. 深空探测发展与未来关键技术 [J]. 深空探测 学报, 2014, 1(1): 5-17. Wu W R, Yu D Y. Development of deep space exploration and its future key technologies [J]. Journal of Deep Space Exploration, 2014, 1(1): 5-17.
[36]
于登云, 吴学英, 吴伟仁. 我国探月工程技术发展综述 [J]. 深空 探测学报, 2016, 3(4): 307-314. Yu D Y, Wu X Y, Wu W R. Review of technology development for Chinese lunar exploration program [J]. Journal of Deep Space Exploration, 2016, 3(4): 307-314.
[37]
Khalighi M A, Gabriel C, Hamza T, et al. Underwater wireless optical communication: Recent advances and remaining challenges [C]. Graz: 2014 16th International Conference on Transparent Optical Networks (ICTON), 2014.
[38]
Boroson D M, Robinson B S, Murphy D V, et al. Overview and results of the lunar laser communication demonstration [C]. Washington: Society of Photo-Optical Instrumentation Engineers, 2014.
[39]
刘向南, 李英飞, 向程勇, 等. 激光测距通信一体化技术研究及 深空应用探索 [J]. 深空探测学报, 2018, 5(2): 147-153, 167. Liu X N, Li Y F, Xiang C Y, et al. Study on integrated technique of laser ranging and communication and its applications in deep space [J]. Journal of Deep Space Exploration, 2018, 5(2): 147- 153, 167.
[40]
姜会林, 张国玉, 付强, 等. 空间光电技术与光学系统 [M]. 北京: 科学出版社, 2015. Jiang H L, Zhang G Y, Fu Q, et al. Space photoelectric technology and optical system [M]. Beijing: China Science Publishing & Media Ltd., 2015.
[41]
Ding H, Chen G, Majumdar A K, et al. Modeling of non-line-ofsight ultraviolet scattering channels for communication [J]. IEEE Journal on Selected Areas in Communications, 2009, 27(9): 1535- 1544.
[42]
吴秋宇, 林长星, 陆彬, 等. 21 km, 5 Gbps, 0.14 THz无线通信系 统设计与试验 [J]. 强激光与粒子束, 2017, 29(6): 1-4. Wu Q Y, Lin C X, Lu B, et al. Design and tests of 21 km, 5 Gbps, 0.14 THz wireless communication system [J]. High Power Laser and Particle Beams, 2017, 29(6): 1-4.
基金
中国工程院咨询项目“我国激光技术与应用 2035 发展战略研究”(2018-XZ-27);国家自然科学基金项目“基于锁模掺钬光纤激光器的空间高速信息传输特性研究”(61975021)
PDF(595 KB)

Accesses

Citation

Detail

段落导航
相关文章

/