
“互联网 +”现代农业的战略路径与对策建议
Strategic Path and Countermeasures for Developing Internet Plus Modern Agriculture
“互联网 +” 现代农业是互联网理念、技术和方法在农业领域的实践,是新一代信息技术革命下互联网与现代农业产业融合的新业态和新模式。本文基于现代农业发展需求分析,提出发展“互联网 +”现代农业的必要性,结合对“互联网 +”现代农业内涵的科学界定,分别从信息感知数字化、农机装备智能化、农业生产精准化、产后管理在线化、农技服务个性化5 个方面分析了“互联网 +” 现代农业的新特征,从技术、产业、应用 3 个层面分析了我国“互联网 +” 现代农业发展瓶颈,据此提出了发展“互联网 +” 现代农业的发展思路和战略目标。研究认为,突破“互联网 +” 现代农业应用的理论、方法和共性关键技术,培育形成“互联网 +”现代农业产业集群,开展“互联网 +”在农业生产、农业供应链、农业生产性服务等方面的集成应用示范是我国现阶段的发展重点;应进一步加快实现农业农村互联网信息互通共享,持续推进“互联网 +” 现代农业技术标准体系建设,加强“互联网 +” 现代农业学科发展与人才培养,驱动现代农业产业变革和转型升级。
Internet Plus Modern Agriculture is the practice of Internet concepts, technologies, and methods in the field of agriculture. It is a new format and mode that integrates Internet with the modern agricultural industry against the background of the new generation of information technology revolution. Based on the analysis of the demand for modern agricultural development, this study puts forward the necessity of developing Internet Plus Modern Agriculture in China. It presents the connotation of Internet Plus Modern Agriculture and analyzes its new characteristics from several aspects, including digitalization of information perception, intelligence of agricultural machinery, precision in agricultural production, online management of post-production links, and personalization of agricultural technology services. It also analyzes the challenges from three levels: technology, industry, and application, and proposes the development ideas and strategic objectives for the next fifteen years. We believe that the current development focus of Internet Plus Modern Agriculture mainly includes three aspects: to make breakthroughs in the application theory, methods, and key technologies; to form an industrial cluster for Internet Plus Modern Agriculture; and to demonstrate the integrated application of Internet Plus into fields such as agricultural production, supply chain, and productive services. To this end, China should accelerate the Internet connectivity and information sharing in the rural areas, constructing a technical standards system for Internet Plus Modern Agriculture, and develop disciplines as well as cultivate professionals related to Internet Plus Modern Agriculture, thus to promote the transformation and upgrades of the modern agricultural industry in China.
“互联网 +”现代农业 / 现代农业产业体系 / 农产品供应链 / 农业生产性服务业
Internet Plus Modern Agriculture / modern agricultural industry system / agricultural product supply chain / agriculturalproductive service industry
[1] |
唐润, 关雪妍, 于荣. “互联网+农业”产业链协同平台建设 [J]. 中 国科技论坛, 2018 (9): 121–127. Tang R,Guan X Y, Yu R. Construction of collaboration platform for “Internet Plus Agriculture” industry chain [J]. Forum on Science and Technology in China, 2018 (9): 121–127.
|
[2] |
郭海红. 互联网驱动农业生产性服务创新: 基于价值链视角 [J]. 农村经济, 2019 (1): 125–131. Guo H H. Internet driven agricultural productive service innovation: from the perspective of value chain [J]. Rural Economy, 2019 (1): 125–131.
|
[3] |
王磊, 但斌, 王钊. 基于功能拓展的生鲜农产品供应商 “互联 网+” 转型策略 [J]. 商业经济与管理, 2018 (12): 5–17. Wang L, Dan B, Wang Z. Fresh agricultural products suppliers’ transition strategy in the era of “Internet +” based on function expansion [J]. Journal of Business Economics, 2018 (12): 5–17.
|
[4] |
Wu B F, Zhang M, Zeng H, et al. Agricultural monitoring and early warning in the era of big data [J]. Journal of Remote Sensing, 2016, 20(5): 1027–1037.
|
[5] |
Subramanian V, Burks T F, Arroyo A A. Development of machine vision and laser radar based autonomous vehicle guidance systems for citrus grove navigation [J]. Computers and Electronics in Agriculture, 2006, 53(2): 130–143.
|
[6] |
赵春江. 智慧农业发展现状及战略目标研究 [J]. 农业工程技术, 2019, 39(6): 14–17. Zhao C J. State-of-the-art and recommended developmental strategic objectivs of smart agriculture [J]. Agricultural Engineering Technology, 2019, 39(6): 14–17.
|
[7] |
De Reffye P, Fourcaud T, Blase F, et al. A functional model of tree growth and tree architecture [J]. Silva Fennica, 1997, 31(3): 297–311.
|
[8] |
姜侯, 杨雅萍, 孙九林. 农业大数据研究与应用 [J]. 农业大数据 学报, 2019, 1(1): 5–15. Jiang H, Yang Y P, Sun J L. Research and application of big data in agriculture [J]. Journal of Agricultural Big Data, 2019, 1(1): 5–15.
|
[9] |
王儒敬. 农业传感器与智能检测技术发展任重道远 [J]. 中国农 村科技, 2018 (1): 32–36. Wang R J. Agricultural sensors and intelligent detection technology have a long way to go [J]. China Rural Science & Technology, 2018 (1): 32–36.
|
[10] |
赵春江, 杨信廷, 李斌, 等. 中国农业信息技术发展回顾及展望 [J]. 中国农业文摘-农业工程, 2018, 30(4): 3–7. Zhao C J, Yang X T, Li B, et al. The retrospect and prospect of agricultural information technology in China [J]. Agricultural Science and Engineering in China, 2018, 30(4): 3–7.
|
[11] |
“中国工程科技2035发展战略研究” 农业领域课题组. 中国工 程科技农业领域2035技术预见研究 [J]. 中国工程科学, 2017, 19(1): 87–95. Task Force for the Research on China’s Engineering Science and Technology Development Strategy 2035 Agriculture Research Group. Technology foresight research on China’s agricultural engineering science and technology to 2035 [J]. Strategic Study of CAE, 2017, 19(1): 87–95.
|
[12] |
潘俊良, 覃悦, 韩长志. 5G通信技术在农林业生产中的应用与展 望 [J]. 安徽农学通报, 2020, 26(7): 144–145. Pan J L, Tan Y, Han C Z. Application and prospect of 5G communication technology in agricultural and forestry production [J]. Anhui Agricultural Science Bulletin, 2020, 26(7): 144–145.
|
[13] |
赵春江, 李瑾, 冯献, 等. “互联网+”现代农业国内外应用现状与 发展趋势 [J]. 中国工程科学, 2018, 20(2): 50–56. Zhao C J, Li J, Feng X, et al. Application status and trend of “Internet Plus” modern agriculture in China and abroad [J]. Strategic Study of CAE, 2018, 20(2): 50–56.
|
[14] |
程华, 谢莉娇, 卢凤君, 等. 农业产业链的增值体系、演化机理及 升级对策 [J]. 中国科技论坛, 2020 (3): 126–134. Cheng H, Xie L J, Lu F J, et al. Value-added system, evolution mechanism and upgrade coutermeasures of agricultural industry chain [J]. Forum on Science and Technology in China, 2020 (3): 126–134.
|
[15] |
任守纲, 何自明, 周正己, 等. 基于CSBFT区块链的农作物全产 业链信息溯源平台设计 [J]. 农业工程学报, 2020, 36(3): 279– 286. Ren S G, He Z M, Zhou Z J, et al. Design and implementation of information tracing platform for crop whole industry chain based on CSBFT-Blockchain [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 279–286.
|
[16] |
胡云锋, 孙九林, 张千力, 等. 中国农产品质量安全追溯体系建 设现状和未来发展 [J]. 中国工程科学, 2018, 20(2): 57–62. Hu Y F, Sun J L, Zhang Q L, et al. Current status and future development proposal for Chinese agricultural product quality and safety traceability [J]. Strategic Study of CAE, 2018, 20(2): 57–62.
|
[17] |
晋农. 加快推进农业机械化和农机装备产业升级 [J]. 当代农机, 2018 (12): 7–9. Jin N. Accelerating agricultural mechanization and upgrading of agricultural machinery and equipment industry [J]. Contemporary Farm Machinery, 2018 (12): 7–9.
|
[18] |
艾海波, 魏晋宏, 邱权, 等. 微型植物工厂智能控制系统 [J]. 农 业机械学报, 2013, 44(S2): 198–204. Ai H B, Wei J H, Qiu Q, et al. Design of intelligent control system for micro plant factory [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(S2): 198–204.
|
[19] |
吴文斌, 史云, 周清波, 等. 天空地数字农业管理系统框架设计 与构建建议 [J]. 智慧农业, 2019, 1(2): 64–72. Wu W B, Shi Y, Zhou Q B, et al. Framework and recommendation for constructing the SAGI digital agriculture system [J]. Smart Agriculture, 2019, 1(2): 64–72.
|
[20] |
费有静, 孙德勤. 智能材料与智能机器人的智能化 [J]. 新材料 产业, 2016 (7): 10–13. Fei Y J, Sun D Q. Intelligent materials and intelligent robot [J]. Advanced Materials Industry, 2016 (7): 10–13.
|
[21] |
辛国军. 协同SaaS平台的数据安全模型研究——面向农机数字 化设计产业链 [J]. 农机化研究, 2019, 41(5): 174–178. Xin G J. Research on data security model of cooperative SaaS platform facing the industrial chain of digital design of agricultural machinery [J]. Journal of Agricultural Mechanization Research, 2019, 41(5): 174–178.
|
/
〈 |
|
〉 |