一种基于制造大数据的产品工艺自适应设计方法

魏巍, 陈政, 袁君

中国工程科学 ›› 2020, Vol. 22 ›› Issue (4) : 42-49.

PDF(1874 KB)
PDF(1874 KB)
中国工程科学 ›› 2020, Vol. 22 ›› Issue (4) : 42-49. DOI: 10.15302/J-SSCAE-2020.04.017
"互联网 +"行动计划战略研究(2035)
Orginal Article

一种基于制造大数据的产品工艺自适应设计方法

作者信息 +

A Product Process Adaptive Design Method Based on Manufacturing-Related Big Data

Author information +
History +

摘要

随着数字化与智能化生产方式在制造业中的广泛应用,引导企业重视并发挥制造大数据的价值对革新产品工艺设计具有重要意义。本文旨在面向企业数据与业务深度融合的应用需求,提出一种基于制造大数据挖掘的产品工艺自适应设计应用方法,用于解决企业中制造数据利用率不足等问题。以企业制造数据为起点,提出了“数据 + 知识 + 决策”的产品工艺自适应设计模式,总结了该模式的制造数据挖掘与利用流程,涵盖多源异构数据融合、数据清洗与预处理、数据变换与降维、数据挖掘、数据可视化和设计决策6个过程。最后以汽车产品焊接工艺为例,建立焊接工艺参数与焊接缺陷的预测模型,用于改善焊接工艺并提高焊接质量,实现制造大数据驱动的焊接工艺自适应设计。研究表明,制造大数据蕴含丰富的知识与模式,可以指导产品设计决策,支持实现不同制造环境下的产品工艺自适应设计;建议进一步推动大数据与第五代移动通信技术等新兴技术的结合,增加对大数据平台、算法设计平台研发的投入,激发制造大数据与产品工艺设计的更大交融。

Abstract

As digital and smart production methods being applied widely in manufacturing, enterprises should pay more attention to the values of manufacturing-related big data, which is important to the innovation of product process design. This study aims to propose a product process adaptive design method based on manufacturing-related big data. This method is proposed based on the requirement of enterprises for data–business deep integration and it is used for solving the insufficient utilization of manufacturing-related data among enterprises. To this end, a product process adaptive design model “data + knowledge + decision” is proposed and the data mining and utilization processes are summarized for the model, namely, multi-source heterogeneous data fusion; data cleaning and preprocessing; data conversion and dimensionality reduction; data mining; data visualization; and design decision. Subsequently, the automobile welding process is used as an example. A prediction model of the relationship between welding parameters and welding defects is established, aiming to improve welding quality and realize welding process adaptive design. This research reveals that manufacturing related big data contains rich knowledge and patterns and thus can guide product design decisions and support the product process adaptive design under different manufacturing environments. In the future, to enhance the integration of manufacturing-related big data with product process design, the integration of big data with 5G technology should be promoted and investment should be increased inthe development of big data and algorithm design platforms.

关键词

产品工艺 / 自适应设计 / 制造大数据 / 数据挖掘 / 知识发现

Keywords

product process / adaptive design / manufacturing-related big data / data mining / knowledge discovery

引用本文

导出引用
魏巍, 陈政, 袁君. 一种基于制造大数据的产品工艺自适应设计方法. 中国工程科学. 2020, 22(4): 42-49 https://doi.org/10.15302/J-SSCAE-2020.04.017

参考文献

[1]
Tao F, Qi Q, Liu A, et al. Data-driven smart manufacturing [J]. Journal of Manufacturing Systems, 2018, 48: 157-169.
[2]
Zhang Y, Ren S, Liu Y, et al. A framework for big data driven product lifecycle management [J]. Journal of Cleaner Production, 2017, 159: 229-240.
[3]
王国成. 从3V到5V: 大数据助推经济行为的深化研究 [J]. 天津 社会科学, 2017 (2): 94-99. Wang G C. From 3V to 5V: A further research of big data boosting economic behavior [J]. Tianjin Social Sciences, 2017 (2): 94-99.
[4]
Thomas W, Oenoki T, Altan T. Process simulation in stamping― Recent applications for product and process design [J]. Journal of Materials Processing Technology, 2000, 98 (2): 232-243.
[5]
周方明, 刘威, 王贤, 等. 排气阀凹槽机器人自动化堆焊工艺设 计 [J]. 江苏科技大学学报(自然科学版), 2014, 28(2): 135-139. Zhou F M, Liu W, Wang X, et al. Exhaust valve groove robotic automation welding process design [J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2014, 28(2): 135-139.
[6]
Qiao Y H, Han J, Zhang C Y. Jig of passenger vehicle chassis design and welding process simulation [C]. Wuhan: 2010 International Conference on Mechanic Automation and Control Engineering, 2010.
[7]
Ferreiro S, Sierra B, Irigoien I, et al. Data mining for quality control: Burr detection in the drilling process [J]. Computers & Industrial Engineering, 2011, 60(4): 801-810.
[8]
Köksal G, Batmaz I, Testik M C. A review of data mining applications for quality improvement in manufacturing industry [J]. Expert Systems with Applications, 2011, 38(10): 13448-13467.
[9]
Tucker C S, Kim H M. Data-driven decision tree classification for product portfolio design optimization [J]. Journal of Computing and Information Science in Engineering, 2011, 9(4): 1-14.
[10]
Fayyad U, Stolorz P. Data mining and KDD: Promise and challenges [J]. Future Generation Computer Systems, 1997, 13(2– 3): 99-115.
[11]
Han J, Kamber M, Pei J. Data mining: Concepts and techniques (third edition) [M]. San Francisco: Morgan Kaufman Publishers, 2012.
[12]
Zhang H, Rao H G, Feng J Z. Product innovation based on online review data mining: A case study of Huawei phones [J]. Electronic Commerce Research, 2018, 18(1): 3-22.
[13]
Kretschmer R, Pfouga A, Rulhoff S, et al. Knowledge-based design for assembly in agile manufacturing by using data mining methods [J]. Advanced Engineering Informatics, 2017, 33: 285- 299.
[14]
Tao F, Sui F Y, Liu A, et al. Digital twin-driven product design framework [J]. International Journal of Production Research, 2019, 57(12): 3935-3953.
[15]
Tao F, Cheng J F, Qi Q L, et al. Digital twin-driven product design, manufacturing and service with big data [J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9–12): 3563-3576.
[16]
Ma J & Kim H M. Product family architecture design with predictive, data-driven product family design method [J]. Research in Engineering Design, 2016, 27(1): 5-21.
[17]
Fu X, Asorey H. Data-driven product innovation [C]. Sydney: The 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015.
[18]
Yu C, Zhu L. Product design pattern based on big data-driven scenario [J]. Advances in Mechanical Engineering, 2016, 8(7): 1-9.
[19]
Bleiholder J, Naumann F. Data fusion [J]. ACM Computing Surveys, 2008, 41(1): 1-41.
[20]
王光宏, 蒋平. 数据挖掘综述 [J]. 同济大学学报(自然科学版), 2004, 32(2): 246-252. Wang G H, Jiang P. Survey of data mining g [J]. Journal of Tongji University(Natural Science Edition), 2004, 32 (2): 246-252.
[21]
孙吉贵, 刘杰, 赵连宇. 聚类算法研究 [J]. 软件学报, 2008, 19(1): 48-61. Sun J G, Liu J, Zhao L Y. Clustering algorithms research [J]. Journal of Software, 2008, 19(1): 48-61.
[22]
夏棒, Emilion R, 王惠文. Dirichlet混合样本的EM算法与动态 聚类算法比较 [J]. 北京航空航天大学学报, 2019, 45(9): 1805- 1811. Xia B, Emilion R, Wang H W. Comparison of EM algorithm and dynamic clustering algorithm of Dirichlet mixtum samples [J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1805-1811.
[23]
朱杰, 陈黎飞. 类属数据的贝叶斯聚类算法 [J]. 计算机应用, 2017, 37(4): 1026-1031. Zhu J, Chen L F. Bayesian clustering algorithm for categorical data [J]. Journal of Computer Application, 2017, 37(4): 1026-1031.
[24]
许文鹏. 数据可视化系统架构的设计与实现 [D]. 北京: 北京交 通大学(硕士学位论文), 2015. Xu W P. Design and implementation of data visualization system architecture [D]. Beijing: Beijing Jiaotong University(Master’s thesis), 2015.
[25]
汪玉薇. 面向中医处方的关联规则挖掘模型改进与应用研究 [D]. 武汉: 湖北中医药大学(硕士学位论文), 2017. Wang Y W. A study on better models for association rule mining in Chinese medicine prescriptions and their applications [D]. Wuhan: Hubei University of Chinese Medicine(Master’s thesis), 2017.
基金
国家重点研发计划资助项目(2018YFB1701703);国家自然科学基金资助项目(51675028);中国工程院咨询项目“‘互联网+’行动计划战略研究(2035)”(2018-ZD-02)
PDF(1874 KB)

Accesses

Citation

Detail

段落导航
相关文章

/