
中国先进半导体材料及辅助材料发展战略研究
Strategic Study on the Development of Advanced Semiconductor Materials and Auxiliary Materials in China
目前,以SiC、GaN为代表的第三代半导体材料快速发展,我国亟需抓住战略机遇期,实现先进半导体材料、辅助材料的自主可控,保障相关工业体系安全。本文在分析全球半导体材料及辅助材料研发与产业发展现状的基础上,寻找差距,结合我国现实情况,提出了构建半导体材料及辅助材料体系化发展、上下游协同发展和可持续发展的发展思路,制定了面向2025年和2035年的发展目标。为推动我国先进半导体材料及辅助材料产业发展,提出了建设集成电路关键材料及装备自主可控工程,SiC和GaN半导体材料、辅助材料、工艺及装备验证平台,先进半导体材料在第五代移动通信技术、能源互联网及新能源汽车领域的应用示范工程,并对如何开展三项工程进行了需求分析,设置了具体的工程目标和工程任务。最后,为推动半导体产业的创新发展,从坚持政策推动,企业和机构主导,整合国内优势资源;把握“超越摩尔”的历史机遇,布局下一代集成电路技术;构建创新链,进行创新生态建设等方面提出了对策建议。
The rapid development of the third-generation semiconductor materials represented by SiC and GaN offers China a strategic opportunity to realize the independent control over its advanced semiconductor materials and auxiliary materials sector and to ensure the security of relevant industrial systems. In this paper, we analyze the development status of semiconductor materials and auxiliary materials in China and abroad, propose the idea of systematic, upstream–downstream coordinated, and sustainable development, and set the development goals for these materials by 2025 and 2035. To promote the development of advanced semiconductor materials and auxiliary materials in China, we suggest the establishment of a project for realizing independent control over key material and equipment of integrated circuit; a platform that provides integrated tests for SiC and GaN semiconductor materials, auxiliary materials,processes, and equipment; and application demonstration projects for advanced semiconductor materials in the fifth-generation mobile communication, energy internet, and new energy vehicle fields. Demand analysis regarding these projects is conducted and specific project objectives and tasks are proposed correspondingly. To promote the innovative development of the semiconductor industry,China should adhere to government guidance to facilitate the integration of domestic advantageous resources, grasp the “More Than Moore” opportunity of to lay out the next-generation integrated circuit technologies, and construct an innovation chain to further improve the innovation ecology.
先进半导体材料 / 辅助材料 / 第三代半导体 / 2035
advanced semiconductor materials / auxiliary materials / third-generation semiconductor / 2035
[1] |
赵婉雨. 聚焦产业关键技术, 把握第三代半导体发展机遇—— 第三代半导体材料产业技术分析报告 [J]. 高科技与产业化, 2019 (5): 28–40. Zhao W Y. Focus on key technologies and seize opportunities—An industrial and technical analysis report of the 3rdgeneration-semiconductor materials [J]. High-Technology & Commercialization, 2019 (5): 28–40.
|
[2] |
朱泓达. 中国半导体硅的现状与发展趋势 [J]. 数字通信世界, 2020 (6): 268, 278. Zhu H D. Current situation and development trend of semiconductor silicon in China [J]. Digital Communication World, 2020 (6): 268, 278.
|
[3] |
韩秀栋, 王熙大, 王亚会, 等. 天津市半导体材料产业发展方向 及对策研究 [J]. 天津科技, 2019, 46(12): 11–12, 15. Han X D, Wang X D, Wang Y H, et al. Research on development direction and countermeasures of semiconductor materials industry in Tianjin [J]. Tianjin Science & Technology, 2019, 46(12): 11–12, 15.
|
[4] |
戴渊. 5G产业发展现状及趋势解析 [J]. 电子测试, 2019 (11): 137–138. Dai Y. Analysis of the development status and trend of 5G industry [J]. Electronic Test, 2019 (11): 137–138.
|
[5] |
GaN RF market growing at 12% CAGR to $2bn in 2025, driven by 5G infrastructure and defense applications [J]. Semiconductor Today, 2020, 15(4): 64–65.
|
[6] |
第三代半导体产业技术创新战略联盟. 2019第三代半导体产 业发展报告 [R/OL]. (2019-12-01) [2020-08-15]. http://www.casa-china.cn/uploads/soft/200529/6_1446304641.pdf. China Advanced Semiconductor Industry Innovation Alliance. Third generation semiconductor industry development report 2019 [R/OL]. (2019-12-01)[2020-08-15]. http://www.casa-china.cn/ uploads/soft/200529/6_1446304641.pdf.
|
[7] |
宋维东. 碳化硅半导体材料的研究现状及发展前景 [J]. 中国粉 体工业, 2020 (2): 8–11. Song W D. Research status and development prospect of silicon carbide semiconductor materials [J]. China Powder Industry, 2020 (2): 8–11.
|
[8] |
史冬梅, 杨斌, 蔡韩辉. III族氮化物第三代半导体材料发展现状 与趋势 [J]. 科技中国, 2018 (4): 15–18. Shi D M, Yang B, Cai H H. Development status and trend of III nitride third generation semiconductor materials [J]. China SciTechnology Business, 2018 (4): 15–18.
|
[9] |
朱雷, 王轶滢, 戴梅. 我国集成电路材料专题系列报告 [R/OL]. (2019-07-15) [2020-08-15]. http://news.eeworld.com.cn/mp/XSY/ a69514.jspx. Zhu L, Wang Y Y, Dai M. A series of reports on China’s IC materials 2019 [R/OL]. (2019-07-15) [2020-08-15]. http://news.eeworld. com.cn/mp/XSY/a69514.jspx.
|
[10] |
邓小川, 谭犇, 万殊燕, 等. 超高压SiC电力电子器件及其在电网 中的应用 [J]. 智能电网, 2017, 5(8): 733–741. Deng X C, Tan B, Wan S Y, et al. Ultra high voltage SiC power electronic device and its application in power grid [J]. Smart Grid, 2017, 5(8): 733–741.
|
[11] |
曾正, 邵伟华, 胡博容, 等. SiC器件在光伏逆变器中的应用与挑 战 [J]. 中国电机工程学报, 2017, 37(1): 221–232. Zeng Z, Shao W H, Hu B R, et al. Chances and challenges of photovoltaic inverters with silicon carbide devices [J]. Proceedings of the CSEE, 2017, 37(1): 221–232.
|
[12] |
武俊齐, 赖凡. 后摩尔时代新兴计算芯片进展 [J]. 微电子学, 2020, 50(3): 385–388. Wu J Q, Lai F. Progress of new computing chips in the more than Moore’s era [J]. Microelectronics, 2020, 50(3): 384–388.
|
/
〈 |
|
〉 |